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Genetic and environmental factors both make substantial contributions to the heterogeneity in individuals’ levels
of cognitive ability. Many studies have examined the relationship between educational attainment and cognitive
performance and its rate of change. Yet there remains a gap in knowledge regarding whether the effect of genetic
predictors on individual differences in cognition becomes more or less prominent over the life course. In this
analysis of over 5000 older adults from the Health and Retirement Study (HRS) in the U.S., we measured the
change in performance on global cognition, episodic memory, attention & concentration, and mental status over
14 years. Growth curve models are used to evaluate the association between a polygenic risk score for education
(education PGS) and cognitive change. Using the most recent education PGS, we find that individuals with
higher scores perform better across all measures of cognition in later life. Education PGS is associated with a
faster decline in episodic memory in old age. The relationships are robust even after controlling for phenotypic
educational attainment, and are unlikely to be driven by mortality bias. Future research should consider genetic
effects when examining non-genetic factors in cognitive decline. Our findings represent a need to understand the
mechanisms between genetic endowment of educational attainment and cognitive decline from a biological

angle.

Cognitive competencies tend to decline with age. Interpersonal
variability in age-related cognitive decline is not fully understood:
while some people experience substantial deterioration in cognitive
function, others maintain better cognitive status despite the presence of
considerable brain deterioration (Stern, 2009). Cognitive decline
threatens independence and quality of life for older adults (Williams
and Kemper, 2010). With an ageing population, both in the U.S. and
worldwide, cognitive decline is an emerging health and social issue,
especially since older individuals are increasingly taking additional
responsibility for financial and medical decisions. Understanding the
predictors that contribute to the variation in the trajectories of cogni-
tive ageing has important biological and public health implications. It
may not only provide insight into the deterioration of cognitive func-
tion, but also enable us to identify individuals at high risk of rapid
decline and the development of personalised strategies for prevention
of cognitive-skill related comorbidities.

Genetic, socioeconomic and behavioural risk factors all make

substantial contributions to the heterogeneity in individuals’ level of
cognitive ability. Twin and family-based studies indicate that at least
moderate proportion of the differences in most domains of cognitive
ability is associated with genetic factors (Bouchard and McGue, 2003;
Rietveld et al., 2014). Social scientists have shown that the relationship
between education and cognition is in part due to the causal effect of
schooling. This relationship can also be due to genetic confounding.
Recent genome-wide association studies (GWAS) found that the genetic
components of general cognitive functions are about 20-30% heritable
(Davies et al., 2016). Higher educational attainment may allow in-
dividuals to cope more effectively with age-related brain deterioration,
and thus perform better on cognitive tasks in later life (Lenehan et al.,
2015; Rietveld et al., 2014; Scarmeas and Stern, 2004). Recent GWAS
have discovered molecular genetic associations with education (Lee
et al., 2018) and general cognition (Davies et al., 2018). The polygenic
score of education constructed by Lee et al. (2018) explains 11-13% of
the variance of educational attainment and 7-10% of the variance of
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Fig. 1. Pleiotropy types and mechanisms between gene, education and cognition.

cognitive performance, suggesting that the phenotypes have shared
genetic basis (Marioni et al., 2014; Okbay et al., 2016; Rietveld et al.,
2014). These findings suggest that common genetic effects may account
for some of the observed association between education and cognitive
ability.

Genetic variants that promote educational attainment — those that
influence brain development and neuron-to-neuron communication, for
example — may have an effect on cognitive functioning throughout the
life course (Lee et al., 2018). The magnitude of their effects may also
change with age. For example, previous research attempting to examine
the importance of genetic risks across the life course has shown that
ageing magnifies genetic effects on cognitive ability (Laukka et al.,
2013; Li et al., 2013; Papenberg et al., 2014; Papenberg et al., 2015).
The rationale is that the association between brain resources and cog-
nitive ability is nonlinear, and that genetic variation is more influential
on performance differences during normal ageing when the brain starts
to lose neurochemical and structural resources (Lindenberger et al.,
2008). However, the majority of previous studies suffers from short-
comings regarding research design and methodology, including cross-
sectional data sources (Li et al., 2013; Nagel, 2008), a small number of
assessed genetic variants (Bretsky et al., 2003; Schiepers et al., 2012),
and focus on a narrow period of the life course (Moorman et al., 2018).
Therefore, it remains largely unknown how affect the trajectory of
cognitive abilities and its rate of change among older adults.

The objective of this study is thus to investigate whether the poly-
genic score for education are associated with later life cognitive func-
tions and cognitive decline independently among middle-aged and
older adults in the United States. We measure cognition and its decline
both separately in the domains of episodic memory, attention and
calculation, and mental status, and as an index measuring general
cognition. We use polygenic scores constructed for the Health and
Retirement Study (HRS) that summarise an individual's cumulative
genetic predictor to educational attainment. The polygenic scores for
educational attainment (hereafter, education PGS) are constructed by
adding the effect-size-weighted risk alleles across the genome asso-
ciated with education based on the third and most recent educational
attainment GWAS consortium paper by Lee et al. (2018), which used
data from 1.1 million participants and identified 1271 lead genetic
variants. The education PGS correlates with years of education

(B = 0.8; se = 0.03) with a predictive power of 10% in our HRS sample
(see supplementary material for more details). This research tackles the
following three research questions: 1) How are the education PGS as-
sociated with level of cognitive function? 2) How does the effect of
education PGS on individual differences in cognition change with age?
3) Does the relationship between genes, age, and cognition still hold
after controlling for other socioeconomic, behavioural and health fac-
tors? We use growth curve analysis across the waves (1998-2014) of
the HRS to gain a better understanding of how genes and education
operate across the life course as people age.

1. Genetics predictors of educational attainment and cognitive
decline

Cognitive ability varies among individuals across the life-span.
Moreover, the within-person sub-dimensions of cognitive decline at
different rates: verbal, numerical and knowledge-based abilities remain
relatively stable in late life, while other mental abilities such as memory
and processing speed start to deteriorate from middle age or even
earlier and at a faster rate (Mustafa et al., 2012; Nisbett et al., 2012).
Episodic memory - the ability to encode and retrieve personally ex-
perienced events that occurred at a specific place and time (Gabrieli,
1998) - is a type of fluid intelligence that involves the ability to think
and reason abstractly. Evidence suggests that episodic memory is in-
dependent of pre-existing knowledge, learning and education, and is
relatively more sensitive to genetic variability (Smith et al., 2018), for
example, the Apolipoprotein E (APOE). On the other hand, mental
status, attention and calculation are types of crystallised intelligence,
which is formed through accumulating knowledge and experience. As
people age and gain new knowledge and understanding, crystallised
intelligence tends to increase first and decline more slowly (Salthouse,
2012). As a channel to gain knowledge and skills, education is expected
to have a substantial effect on crystallised abilities.

Wedow et al. (2018) described two pathways (Fig. 1) through which
genes could influence social and health outcomes. One pathway for the
connection between education PGS and cognitive functions is biological
pleiotropy (Pickrell et al., 2016). That is, genes contribute to both
educational attainment and cognition independently due to underlying
biological and latent genetic mechanisms. For example, a person's
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genetics may influence brain development to affect non-cognitive self-
control, interpersonal skills, preferences and behaviours leading to
differences in both educational attainment and cognition (Belsky et al.,
2016; A. Okbay et al., 2016). In addition, a person's education-in-
creasing genotypes may be associated with parental education-in-
creasing genotypes, which can in turn select the individuals into so-
cially advantaged families that promote both cognitive development
and educational attainment (Belsky et al., 2016, 2018; Kong et al.,
2018; Lee et al., 2018). This explanation raises the issue that any ob-
served association between educational attainment and cognition may
be spurious due to the omitted genetic variable bias.

The second pathway for the association between genetic predictors
for education and cognitive status is mediated pleiotropy. Well-estab-
lished evidence suggests that educational level in early life affects the
level of cognitive performance in later life (Gatz et al., 2001; Tucker-
Drob et al., 2009; Van Dijk, Van Gerven, Van Boxtel, Van der Elst and
Jolles, 2008; Zahodne et al., 2011). The potential mechanisms are im-
proved cultural competence and reasoning skills, a more effective use of
brain function and cognitive processing, and a healthier occupational
environment and lifestyle (Andel et al., 2006; Chen et al., 1999; Kramer
et al., 2004). According to this explanation, genes that are causally
associated with education affect cognitive performance through the
mediated path.

The first research question is therefore whether there is an asso-
ciation between education PGS and the level of cognitive ability?
Evaluating this relationship could aid our understanding of the asso-
ciation between educational attainment and cognitive status — to what
extent cognition is influenced by educational attainment via biological
mechanisms and unobservable confounders related to environmental
factors. Drawing from recent advances in GWAS and the theoretical
relationship between education and cognitive performance, we hy-
pothesise that education PGS is positively related to the level of cog-
nitive ability in old age, independent of the phenotypic educational
attainment (Hypothesis 1).

The relationship between genetics and cognitive rate of change is
less straightforward and more domain-specific. Since crystallised in-
telligence is more dependent on education, we speculate that genetics
are more likely to affect attention and concentration, and mental status
via mediated pleiotropy. Evidence on whether educational level influ-
ences the trajectory of age-related cognitive decline is inconsistent.
These inconsistent findings may be due to methodological differences,
such as sample characteristics, analytic strategies, type of cognitive
measures and decline, or selection and confounding (Foverskov et al.,
2018; Gottesman et al., 2014).

Some earlier studies linking education with cognitive change in old
age find that lower levels of education are associated with a faster
decline in verbal fluency, mental status and general cognition (e.g.
Albert et al., 1995; Jacqmin-Gadda et al., 1997; Lyketsos et al., 1999).
These studies posit that individuals with a higher level of education use
brain networks or cognitive paradigms more efficiently or flexibly, and
would exhibit a smaller decline in cognitive function relative to those
with a lower level of education (Salthouse et al., 2003). More recent
studies cast doubts on whether rates of cognitive decline vary by edu-
cation in later life. Many suggest that higher levels of education do not
attenuate the rate of decline in episodic memory, working memory,
processing speed and verbal fluency (Glymour et al., 2012; Gottesman
et al., 2014; Karlamangla et al., 2009; Zahodne et al., 2011). Others
report that higher education is associated with faster cognitive decline
in attention & concentration. (Gottesman et al., 2014; Zahodne et al.,
2015). A potential explanation for the lack of positive association be-
tween education and rate of cognitive decline is that education raises
baseline cognitive performance, which increases the time needed to
decline to the pathological threshold. People with higher level of edu-
cation thus decline at a similar rate to their lower-educated counter-
parts, or even a faster rate if they rely on specific cognitive domains to
compensate for declines in other cognitive domains. In summary, recent
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evidence shows no association on the phenotypic educational attain-
ment and cognitive decline. Since declines in crystallised domains are
less sensitive to the educational protective effect, we extend the phe-
notypic perspective to genetic inquiry and hypothesise that education
PGS are not associated with the rate of cognitive change in crystallised
domains (Hypothesis 2).

From a biological perspective, studies demonstrate magnified ge-
netic influence on different types of cognition and the rate of cognitive
decline during normal ageing (Tucker-Drob et al., 2014). Meta-analysis
suggests increased heritability for episodic memory, working memory
and spatial ability from early to late adulthood (Reynolds and Finkel,
2015). The resource-modulation hypothesis proposed by Lindenberger
et al. (2008) hypothesises that losses of structural and neurochemical
brain resources in non-pathological ageing moderate the effects of
common genetic variations on cognitive performance. The hypothesis
assumes a non-linear function linking brain resources to cognitive
abilities, and differences in genetic predictor exert magnifying effects
on cognitive functions as brain resources reduce from high to medium
levels. Given that episodic memory may be closer to the molecular ef-
fects of a gene than cognitive reserve such as education, the rate of
change in episodic memory is expected to be more sensitive to genetic
effects (Papenberg et al., 2015; Rasch et al., 2010). Older adults,
therefore, may benefit more from positive genetic endowment relative
to their younger counterparts. Therefore, we hypothesise that a higher
level of education PGS may be associated with a lower rate of decline in
episodic memory (Hypothesis 3).

Previous research has found evidence that supports the resource-
modulation hypothesis. For example, APOE polymorphism is involved
in lipid homeostasis and injury repair in the brain (Papenberg et al.,
2015): carrying the e4 allele is a strong risk factor for accelerated
cognitive decline in ageing (Filippini et al., 2011; Liu et al., 2010;
Zhang and Pierce, 2014). However, the literature to date suffers from a
few limitations. First, the majority of past research focuses only on one
or a handful of genetic variants such as the aforementioned APOE
(Bretsky et al., 2003; Schiepers et al., 2012), brain-derived neuro-
trophic factor (Ghisletta et al., 2014), catechol-O-methyltransferas
(Papenberg et al., 2013) and kidney- and brain-expressed protein (Muse
et al., 2014). These studies are controversial as they tend to produce
results that are rarely replicable due to their lack of power to detect
plausible effects (Benjamin et al., 2012; Chabris et al., 2012). Second, a
large number of studies adopt a cross-sectional design (Li et al., 2013;
Nagel, 2008); longitudinal studies are rare but necessary to confirm the
patterns observed in the cross-sectional data (Papenberg et al., 2015).
Third, recent studies using the polygenic scores from GWAS studies and
longitudinal data sets tend to focus on cognitive development in young
age (Moorman et al., 2018), and at a narrow period of the life course
(Ritchie et al., 2019).

In summary, our research studies how genetic variants influence
trajectories of cognitive performance across the later lifespan. We
overcome the aforementioned limitations by measuring genetic pre-
dictors for education using the polygenic score method among over
7000 individuals aged 50 and above and tracked over 16 years.

2. Data and methods
2.1. Data

The Health and Retirement Study (HRS) began in 1992 and is a
biennial, longitudinal survey of a nationally-representative sample of
individuals and their spouses aged 50 and above. In 2006 and 2008, the
HRS collected genetic (saliva) samples from approximately 84% of
participants undergoing face-to-face interviews (12,507 individuals).
These DNA samples were genotyped for about 2 million SNPs. This
study exploits the longitudinal nature of the HRS to explore cognitive
performance trajectories among older adults in the U.S. We use eight
waves of HRS data (from 1998 to 2012). Pre-processed datasets
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included the user-friendly RAND HRS data files (version P) and
1998-2012 HRS Core Files.

2.2. Sample

During the period 1998-2012, 8652 respondents were genotyped.
Growth curve models typically require at least three waves of repeated
measures for each individual (Curran et al., 2010), 2699 (31.2%) re-
spondents whose cognitive performance was measured fewer than three
times were removed. Since this study only focuses on age-related cog-
nitive decline, we have differentiated normal cognitive functioning
from impaired functioning. A composite score measuring memory and
mental status have been constructed (ranging from O to 27). Re-
spondents (n = 36) with a score of less than seven exhibited signs of
dementia (Crimmins et al., 2011) and were removed. Finally, for the
main analysis, only individuals from European and non-Hispanic
backgrounds were included. The 5859 remaining respondents had at
least three cognitive interviews: 25% had four or fewer interviews, 50%
had six or more interviews, providing 34,184 person-wave observa-
tions.

2.3. Dependent variables — cognitive measures

In the HRS, assessment of cognitive function is based on a reduced
version of the telephone interview for the assessment of cognitive status
(Desmond et al., 1994), which was derived from the Mini-Mental State
Exam (MMSE) (Folstein et al., 1975). The assessment has been vali-
dated for use as a screening instrument for cognitive performance. The
same cognitive tests were administered during all the included waves of
data collection and were used to construct cognitive trajectories for
individuals on each test (Herzog and Wallace, 1997).

Episodic memory (EM) was measured by immediate and delayed
word recall. Respondents were read a list of ten common words (e.g.
hotel, sky, water) and were then asked to recall as many of them as
possible both immediately after the list was read and also several
minutes later. The score records the total number of words the re-
spondent correctly recalled at each instance and ranges from 0 to 20.

Attention & calculation (A&C) was assessed with the serial 7s sub-
traction test. The respondents were asked to subtract 7 from 100 and
continue subtracting 7 from each subsequent number for a total of five
trials. The scores record the correct number of trials (ranging from 0 to
5). The serial 7s subtraction test assessed mixed abilities of attention,
calculation and working memory that maintains and manipulates in-
formation using short-term memory.

Mental status (MS) was assessed by naming the date, month, year
and day of the week (ranging from 0 to 4), backwards counting from 20
(0-2), object naming (0-2), and naming the current president and vice
president of the U.S (0-2).

Global cognition (GC) is a summary measure of the cognitive do-
mains mentioned above (ranging from 0 to 35). To provide compar-
ability across all measurements, we rescaled individual and global
cognitive variables into a corrected percentage score — based on divi-
sion by the maximum score and multiplication by 100.

The HRS includes other additional cognitive measures such as
Wechsler Adult Intelligence Scale similarities, numeracy, quantitative
reasoning and verbal fluency modules. We chose not to include them in
our analyses as they were either asked of a small group of respondents
or only added to the survey waves recently (Fisher et al., 2017).

2.4. Independent variable — education PGS

The education PGS is based on the most recent GWAS results ex-
cluding the HRS samples (Lee et al., 2018), from which SNP effects on
years of education are obtained. Higher scores predict higher years of
education and serve as indicators for a genetic predictor to educational
attainment. The education PGS was standardised for the full sample so
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that effects can be interpreted as a =1 SD change relative to the
sample. The relationship between education PGS, years of education
and cognitive functions are presented in Supplementary Material Table
S1.

The research method using genetic data may suffer from potential
selection bias, as respondents had to live until the 2006-2008 geno-
typing period. Of the original 37,495 respondents, 28,136 (75%) lived
until at least 2006. Death of HRS participants prior to genotype col-
lection in 2006, 2008 and 2010 may cause mortality selection bias. If
individuals with lower level of education PGS and worse cognition were
more likely to die, the association we estimated on the sample could be
confounded (Domingue et al., 2017). To alleviate the concern, we ap-
plied the inverse probability weighting to account for mortality selec-
tion in our main analyses.

2.5. Covariates

Educational attainment is measured in years of education. We
control for gender and population stratification for all analyses, as the
frequencies of certain genetic variants vary by ancestral background.
Ignoring genetic variation due to ancestry may result in population
stratification bias when genetic effects are confounded by ancestry.
Standard practice in accounting for population stratification using
GWAS data is to include as covariates the first few principal compo-
nents that capture most of the genetic variation due to ancestry. We
adjusted for population stratification using the first ten principal com-
ponents (Price et al., 2006).

2.6. Analytical strategy

Growth curve models were used to examine the individual cognitive
trajectories of the respondents, which enabled us to study the effect of
genetic predictor to educational attainment on the level of cognitive
ability and its rate of change. We fit a linear, age-related decline
random effect model and allow the age intercept and slope in the
models to co-vary. Separate growth curve models were estimated with
each cognitive measure as a dependent variable. Random effects in-
cluded intercept and linear age, with the conventional unstructured
covariance. A general specification of the model is

Cognition; = B, + B, X (Age; — Age) + B, X PGS;
+/33><PGS,-><(Agej—A_ge) +54 *}(ij+ BS *Xij
* (Age — Age) + py + py; + (Age; — Age) + &

where age is centred around the grand mean (75), Cognition;; represents
the cognitive score for person i at age j, §, is the population mean of
cognitive ability at the grand-mean age, 5, represents the linear fixed
effect of age, 8, represents the effect of education PGS on the cognitive
ability, B, is the linear effect of education PGS on the change rate of
cognitive skills, 8, and §; are the effects of X — a vector including in-
dividual covariates — on initial cognitive ability and the growth rate of
change. o, and o, are the random intercept and slope. y; and y;; are
intercept and age variance.

3. Results

The rescaled cognitive scores represent the comparable percentage
of correctly completed tasks. MS tasks were relatively easier compared
to EM and A&C tasks. Older adults on average completed 80% and 70%
of the A&C and MS tests respectively, while EM has only a mean score
around 44, dragging GC towards 60 (Table 1). The mean trajectory in
cognitive change over age is presented in Fig. 2.

Higher genetic predictor for education is associated with better
cognitive performance, independent of education.

Fig. 3 depicts the genetic effect sizes at age 75 from the growth
curve models on each cognitive measure. For each outcome, we explore
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Table 1
Summary statistics for all variables in the analysis: HRS 1998 To 2012
(N = 34,184).

Variables Mean (SD) or Percentage

Outcomes: Cognitive Functions (rescaled)
Episodic Memory (EM)

Attention and Concentration (A&C)
Mental Status (MS)

General Cognition (GC)

48.40 (16.67)
75.92 (29.61)
88.24 (13.34)
65.47 (12.69)

Exposure:
Education PGS (Unstandardized) —0.23 (0.14)
Age 74.59 (6.99)
Gender (female) 57.56%
Years of Education (Unstandardized) 12.96 (2.52)
Social engagement
Low 85.52%
Moderate 12.47%
High 2.01%
Current Smoker 8.31%
Drinking
Non-Drinker 64.28%
Moderate-Drinker 34.85%

Heavy-Drinker 0.84%
Chronic Conditions

No Condition 33.48%
1-2 Conditions 57.74%
More than 3 Conditions 8.78%

two models: a model with education PGS as the only predictor, and one
with education PGS with education adjusted. Age, gender and the first
ten principal components are included in all the models.

There is a clear pattern showing that education PGS are in-
dependently positively correlated with cognitive levels (Hypothesis 1).
HRS respondents with a higher education PGS higher than their peers in
cognitive tasks across all measures at age 75. The effect size of one
standard deviation increase in education PGS on cognitive ability

=)
S e o o @
- e o
e @
a2 -
=
9]
=
23 -
Q
= o |
gv
)
g
® ®
e o
o e o o 4
50 55 60 65 70 75 80 8 90 95
Age Group
=)
=
[=3
[ea]
2]
B
S22 e e e e o
n e e e e @
= e o o o @
g @ - e e e o o & o
3 e o o & @
= e o o o @
S e o o & o o
e o o & o
® e e o @
o e o & @
50 535 60 65 70 75 80 8 90 95

Agé Group

Social Science & Medicine 239 (2019) 112549

ranges from 1.9 to 5.7. Estimates are statistically significant
(p < 0.001). Since education PGS and educational attainment are
correlated (f = 0.31, p < 0.001), unsurprisingly the effect sizes drop
after education is controlled for, yet the effect sizes remain highly
significant. After taking years of education into account, the effect size
of education PGS on EM, A&C, MS and GC declines by 60%, 40%, 40%
and 50%, respectively. These results indicate that education PGS in-
fluence cognitive performance both independently, and through an
education-mediated pathway.

3.1. The effect of genetics on cognitive decline varies over age and by
domains

The genetic influence on rate of decline is modelled by intercepts
and slopes of the growth curve as functions of education PGS and
covariates. Fig. 4 displays the predicted age-specific cognitive scores
based on the fixed effects of education PGS (with and without con-
trolling for education). Education PGS is negatively associated with EM,
and therefore a faster rate of decline (f = —0.04, p < 0.01). The ef-
fects indicate that higher education PGS would lead to a faster rate of
EM decline in old age. Individuals with higher education PGS scores
higher on GC and EM at the late stage of middle age, but the genetic
effect diminishes with age. This result contradicts our hypothesis 3, in
that the advantage of a higher education PGS on GC and EM fades at old
ages. For crystallised intelligence, in line with hypothesis 2, higher
education PGS does not change the rate of cognitive decline. Again,
after controlling for education, the association between education PGS
and the rate of cognitive decline weakens.

For GC, we found that in the education-unadjusted model, educa-
tion PGS does not have a significant effect on GC decline. Surprisingly,
when both education PGS and educational attainment are included in
the model, the effect of education PGS becomes stronger and significant
at the 0.01 level. Education PGS is associated with a faster GC decline
driven by EM. The GC results indicate a suppression effect between
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EM A&C MS GC

‘ I PGS only

I Education adjusted

Note: The barplot shows the magnitude of the effect of a 1 SD increase in polygenic score on
percentage correctness cognitive performance at age 75. Error bars indicate 95% confidence
intervals. Dark navy bars show the effect sizes for the base models that education-linked
polygenic score is the only predictor. Blue bars indicate the effect sizes for the education
adjusted models. Both polygenic score and years of education are standardised. Gender and
ten principal components are adjusted in all models. For details, see supplementary

materials.

Fig. 3. Association between education-linked polygenic score and level of cognitive abilities (n = 5,859, N = 34,184).

education PGS and educational attainment that statistical removal of
the education PGS effect could increase the magnitude of the re-
lationship between years of education and cognitive decline.

We further examined whether the effect of education PGS could be
mediated or confounded by other covariates. We add social engage-
ment, drinking, smoking and health conditions individually to the
education-adjusted models. A final full model includes all the covari-
ates. Intercept results for education PGS and years of education are
presented in Fig. 5a. For intercept, the effects of education PGS on
cognitive performance does not change after adjusting for covariates
across all measured cognitive sub-domains. For slope, only education
PGS robustly predicts a faster rate of EM decline (Fig. 5b). For general
cognition, we found that the effect of EA3 becomes insignificant on the
rate of decline after including smoking and pre-existing health condi-
tions.

3.2. Sensitivity analyses

We conducted sensitivity analyses to evaluate the consistency of
findings. Details are presented in the supplementary materials. First, to
examine whether our results are driven by mortality selection, we
compared our main analyses with models unadjusted for inverse
probability weights. The results from unweighted and weighted models
are very similar. Weighted models improve the model fit measured by
AIC and BIC. Further, we estimate our models in four birth cohorts
(before 1917, 1917-1926, 1927-1936, after 1937). However, the as-
sociation between education PGS and rate of change in EM loses its
significance in every cohort, but the sign remains negative. This may
indicate a lack of power from the small sample for each cohort, as the
sample size ranges from 859 to 2485. Therefore, even though weighted
results reassure us that selection did not produce much bias, we cannot
completely rule out the competing explanation.

Second, the nature of the survey-based assessments may produce

measurement error in cognitive domains. We plot the coefficient of
variation (standard deviation/mean) as an indicator of measurement
error (see Supplementary Material). It shows that the coefficient of
variation increases with age slightly and becomes fairly unstable after
age 90. We excluded the respondents age 90 and above and ran our
models again, and our conclusion holds after removing the oldest old.
In addition, since cognitive measures are the dependent variables, any
measurement error is not likely to bias the estimated effect of education
PGS but to reduce the power of the statistical model. Our findings of
lack of association hence should be interpreted with caution.

Third, recent studies find that people with higher education PGS are
more likely to be born in socially advantaged families (Belsky et al.,
2016, 2018; Domingue et al., 2015). Our results are robust after con-
trolling for parental education as a measure of family origin.

Fourth, we control for the general cognition related polygenic score
based on Davies et al. (2015). We examine whether education PGS
influence cognitive performance via cognition-related genetic me-
chanisms. The magnitudes of estimates are slightly reduced, suggesting
that education PGS predict cognitive performance and decline in-
dependently of cognition-linked genetics. The effect of education PGS
on each cognitive domain holds even after controlling for covariates,
suggesting that genetic effects are not completely mediated by educa-
tional attainment and other mediators.

Finally, Keller (2014) has expressed scepticism on the positive
findings from gene-environment interaction studies in that potential
confounders are not properly accounted for in the statistical models
used to test G X E effects. Including the potential confounders as cov-
ariates alone in the models may not be sufficient, as this practice does
not control for the effects these variables might have on the gene-en-
vironment interaction. To show that the results in this study are robust
after properly controlling for confounders, we re-ran the G X E models
adding the covariate-by-environment (C X E) and the covariate-by-
gene (C X G) interaction terms. The results are similar to the main
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Note: The margin plots show the effect of a I SD increase in polygenic score on the rate of
change in cognitive decline with age. The y-axes represent the percentage of correctness in
the completed tasks for the domains. The shaded areas show 95% confidence intervals. Blue
lines show the trajectories for the base models that education-linked polygenic score is the
only predictor. Orange lines indicate the trajectories for the education adjusted models. Both
polygenic score and years of education are standardised. Gender and ten principal
components are adjusted in all models. For details, see supplementary materials.

Fig. 4. Association between education-linked polygenic score and the rate of change in cognitive decline (n = 5,859, N = 34,184).

analyses (see supplementary materials).

4. Discussion

In this study, we aim to explain the interpersonal variability in age-
related cognitive decline with education PGS. Existing research pre-
dominantly focuses on quantifying genetic and environmental compo-
nents of variance in cross-sectional cognitive data and has provided
evidence of genetic influences on cognitive ability (Davies et al., 2016).
Yet, few researchers have examined longitudinal cognitive change and
genetic predictor. Genes are inherited pre-birth and remain the same
over a lifespan, but genetic effects on phenotypes can vary over age as a
function of gene expression associated with developmental timing or
environmental circumstances (Lee et al., 2016). Research to date has
not offered information on changes in the genetic contribution to in-
dividual heterogeneity in cognitive performance in older age.

Our main research question is whether education PGS is associated
with higher initial level and variation in cognitive abilities at the early
stages of older adulthood. We analysed data on the trajectory of cog-
nitive performance across three individual and one aggregate domains
in over 5000 individuals interviewed longitudinally as part of the HRS.
In line with previous literature, we find that education PGS predict a

higher initial level of cognitive performances independent of observed
years of education, parental education, cognition-related PGS, and
other social factors. Our results on the cognitive decline are unlikely to
be driven by selection bias. In terms of the rate of cognitive change, the
effect of education PGS on episodic memory diminishes over age. We
observe no association between education PGS and the rate of change in
the attention & concentration and mental status.

Results across a range of cognitive domains suggest that the edu-
cation PGS is related to significantly higher cognitive functions. Even
after controlling for observed years of education, the relationship be-
tween education-associated genetic variants and cognitive ability per-
sists. The magnitude of the genetic effect size decreases in education
adjusted models. These results are consistent with the evidence from
Aysu Okbay et al. (2016), Rietveld et al. (2013), and Rietveld et al.
(2014), which suggests that there is an education PGS influence on
cognitive ability via both biological pleiotropy and mediated pleio-
tropy. The genetic variants are associated with a particular neuro-
transmitter pathway involved in synaptic plasticity, which is the main
cellular mechanism for learning and memory (Rietveld et al., 2014).

The analyses of cognitive trajectories caused by normal ageing
showed that education PGS is related to the rate of cognitive decline,
but the effect is only on episodic memory — a type of fluid intelligence —
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a). Intercept results for four cognitive outcomes.
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Note: The barplot shows the magnitude of the effect of a 1 SD increase in polygenic score on
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intervals. Dark navy, navy, blue, medium blue, and light blue bars show the effect sizes for
social integration, drinking, smoking, health condition, and all covariates adjusted models.
Both polygenic score and years of education are standardised. Gender and ten principal
components are adjusted in all models. For details, see supplementary materials.

b). Slope result for Episodic Memory, all covariates adjusted.
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Fig. 5. Intercept and slope results from the growth curve models on cognitive outcomes, controlling for covariates (n = 5,859, N = 34,184).
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and driving the same effect on global cognition. Performances in global
cognition and episodic memory are better in groups with higher edu-
cation PGS for those under 85 years old; this difference is completely
attenuated over the age of 90 due to faster cognitive decline in the high
education PGS group. The findings on cognitive decline are in agree-
ment with recent studies showing that genetic effects vary in cognition
with age (Lee et al.,, 2016). However, the results contradict recent
candidate gene analyses, which supports the resource-modulation hy-
pothesis (Laukka et al., 2013; Li et al., 2013; Papenberg et al., 2014).
Candidate genes research focusing on a small amount of genetic var-
iants may find a magnifying effect during the ageing process via very
specific biological channels (for example, APOE influences memory
through low-density lipopropotion cholesterol, high-density lipopro-
potion cholesterol, and tryglycerides) (Taylor et al., 2011). Such an
effect is age-specific. Taylor et al. (2011) report a lack of association
between APOE and cognitive function in children. Belsky et al. (2016)
adopt a polygenic score approach using growth curve modelling and
finds that children with higher polygenic scores performed better on
cognitive tests and exhibited a faster pace of cognitive development
during childhood. Their result, along with our findings, may suggest
that education PGS are more important during younger age, helping
individuals to achieve higher education levels, but the protective effect
diminishes on episodic memory during the ageing process. Note that
our analyses only examine episodic memory as fluid intelligence due to
data availability. Future research needs to test more cognitive functions
in order to generalise results to other types of fluid intelligence. Future
research should also test cognitive change across a longer life span that
covers childhood, younger and middle adulthood to comprehensively
infer the heterogeneity of genetic influence on the cognitive trajectory.

For global cognition, when we model education PGS and educa-
tional attainment separately, both education PGS and education do not
have any effect on the rate of cognitive decline. When education PGS
and years of education are jointly included in the model, education PGS
and years of education both become statistically significant with op-
posite but more substantial magnitudes of effects. This finding indicates
that the education PGS and phenotype confound each other via a sup-
pression effect. Failure to take genetic predictor into account may un-
derestimate the protective effect from years of education, and the ad-
verse effect of genes for education.

Our study suffers from three main limitations. First, the variability
in genetic effect may be due to ceiling and floor effects inherent in
cognitive measures that narrow the potential range of decline. Mental
status as a crystallised intelligence tends to start declining at a later age
compared to fluid intelligence and is most pronounced in older adults
with pathological brain damages (Albert, 1995). The finding that older
adults with lower level of genetic predictor to educational attainment
experience a more rapid cognitive decline (compared to a more gradual
decline for those with higher education PGS) could be due to ceiling
effects in the measurement that limit the variability of change for well-
educated older adults with higher initial scores. People with higher
education PGS thus enjoy higher cognition for their entire adult life.
More sensitive measures that cover greater variability in cognitive
function might provide more accurate estimates in future research.
Sensitivity analyses excluding the individuals who score the lowest 5%
in each measure retained similar results, suggesting floor effects do not
compromise the analysis.

Second, although the polygenic score approach is superior to the
traditional candidate genes approach in many ways as mentioned
above, it is not without limitation. The polygenic socre is based on
mostly homogeneous groups of non-Hispanic Caucasian older adults in
the U.S. Our findings may not extend to individuals of other ethnic or
cultural backgrounds, or later-born cohorts. Furthermore, the education
PGS we use explains only a small proportion of Lee et al.’s (2018) es-
timated genetic influence on educational attainment (Supplementary
Material). The genetic discoveries on education PGS do not account for
gene-gene interactions or gene-environment interactions. This may lead
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to measurement error in the score. Our estimates may be thus biased
toward zero (Conley, 2016), which provides a potential explanation for
the lack of association between education PGS and the rate of change in
crystallised intelligence.

Despite its limitations, this study provides an essential contribution
to existing knowledge on the variability of cognitive decline by ge-
netics. Our results are consistent with recent research showing that
education and cognitive ability are genetically correlated (Belsky et al.,
2016, 2018; Wedow et al., 2018). We provide evidence that the causal
link between educational attainment and cognitive abilities is subject to
genetic confounding. Genetic effects on cognition are not fully medi-
ated by education and independent genetic influences may exist in the
relationship between education and cognitive decline. The associations
between a genetic predictor to educational attainment and cognitive
decline that have been identified are especially relevant because they
help to clarify the contributions of observed education and genes to
cognitive ageing. Future research should also consider genetic effects
when investigating non-genetic factors in cognitive decline. Controlling
for genetic effects can avoid omitted variable bias when estimating
environmental factors. The finding that the genetic effect on cognitive
decline for episodic memory decreases with age represents a need to
understand the mechanisms between genetic endowment of educa-
tional attainment and cognitive decline from a biological angle.
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