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Abstract: While large-scale population studies provide a wealth of insight and knowledge about 
the health and wellbeing of the aging population, they typically rely on self-report which has 
been found to be unreliable, especially among older adults. In addition, the assessment strategy 
usually occurs sporadically, spaced years apart to reduce patient and investigator burden. 
Finally, the data itself is not fully ecologically relevant being prone to test situation biases. To 
overcome these shortcomings of self-report and procedural limitations many new developments 
using pervasive computing and continuous remote sensing strategies, incorporating high 
dimensional (“big data”) analytics show great promise for transforming health data capture and 
follow-up. By assessing health and behavior continuously, objectively and longitudinally, it 
becomes possible to generate more robust models on the inter-relationships between health 
and behavior. This review describes the various behaviors and parameters that can be collected 
via continuous assessment and the devices and assessment strategies that are used to capture 
key behaviors. Using the framework of wellbeing, we review strategies to assess behaviors that 
fall into three key categories of wellbeing. These include physical and physiological function, 
cognitive and intellectual wellbeing, and social behaviors and function. Thus, specific behaviors 
that can be assessed objectively and more continuously include body composition or weight (an 
example of a basic physiologic measure), medication adherence (an example of an everyday 
cognitive-functional task as well as an important medical outcome), and time out-of-home (and 
example of a measure of social engagement with the world). Devices and assessment 
strategies that are used to capture these key behaviors include an array of wearable devices, in-
home sensor platforms, internet based surveys, computer tracking software, and “smart” 
devices. We review the applicability of these data collection methods to Health and Retirement 
Study and give suggestions for future avenues of research. 
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I. INTRODUCTION 
 Large-scale population survey studies provide the critical data needed at multiple levels to 
guide governments and society in the health and wellbeing of its citizens. The Health & 
Retirement Survey (HRS), established in 1992, is perhaps the canonical example of these 
studies in the United States. The HRS was originally designed as a nationally representative 
longitudinal cohort survey of Americans over 50 years of age. The main purpose has been to 
study the changes in participation in the workforce and changes in health as people transition 
out of their working years and into retirement. The design and methodology employed to meet 
this mission has relied on relatively widely spaced assessment intervals (every two years) using 
standard brief questionnaires. Over the many years, the HRS has had to adapt to the times to 
ensure that it continues to provide the best indicators to meet its mission. Accordingly, several 
waves or subpanels have been added to address specific needs. New methodologies have 
been adopted to accommodate changes in communication behavior and technology. For 
example, in 2006 HRS added face-to-face interviews for all participants at every other 
assessment year (every four years). This face-to-face interview allows for the collection of blood 
based biomarkers, physical measures, and psychosocial information. These new protocols have 
been important additions; other large longitudinal surveys and cohort studies have mirrored this 
evolution.  

 Despite the important modifications made to the HRS and similar studies to continually 
improve its data, the basic paradigm for data capture - episodic brief survey periods with many 
self-report based measures - remains unchanged. This approach has inherent limitations. The 
sparsely spaced assessment intervals allow for capture of only brief snapshots of function. This 
limits the ability to identify potentially complex trajectories of change and more high resolution 
features of that change. Thus, interval data such as circadian or seasonal patterns may be 
difficult to detect. The low granularity of data capture reduces the ability to explore intra-
individual trends and change. During interviews (whether in person or via telephone) much data 
relies on self-report which for many domains of health is unreliable or highly variable. In-person 
examinations, when performed, are obtrusive, performed more at the convenience of the 
assessors (not on weekends or holidays), and can be in an artificial setting although some of 
the supplemental studies (for example the Aging, Demographics and Memory Study) include in-
home clinical interviews [1]. The assessments use surrogates or indirect measures of function 
(e.g., a timed walk with a stopwatch as a measure of mobility). Although one attempts to obtain 
best effort responses from survey volunteers, many of the scales and ratings are not particularly 
engaging and can even be stressful to complete. They do not represent tasks that people 
perform in their usual day-to-day lives. As such these assessments lack ecological validity. 
Because the longitudinal data capture may rely on human assessors or raters, inherent testing 
bias and test-to-test variability is continually introduced. Finally, the approach to data collection 
is limited by being unable to directly and dynamically integrate knowledge across related 
domains of a multitude of factors significantly affecting important outcomes (i.e., sleep, 
socialization, physical activity, physiology, and environment). That is, these constantly changing 
domains cannot be captured with conventional assessments in a format which is conceptually 
compatible with a continuous, aligned, time-stamped time-series.  

 Despite these limitations, the HRS has provided a wealth of insight and knowledge about the 
health and wellbeing of the aging population. Having historically evolved with the times, it 
currently stands in a position to consider what may be the next best opportunities to address 
some of the limitations that have been a part of the past. In this review, we consider how the 
current episodic, sparsely-spaced, self-report-anchored assessment paradigm may be 
transformed to a more continuous, objective and ecologically valid data capture system. The 
grist for this transformation lies in recent and rapidly developing innovations in sensing and 
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pervasive computing methodologies, wireless technologies and high dimensional (“big data”) 
analytics.  

 This review covers a large field within many intersecting and cross-cutting themes and 
“movements”: digital health, mHealth, the Internet of Things, etc. The following sections provide 
highlights of how transformative technologies may improve the conduct of the HRS and related 
studies. We provide a perspective, not a systematic review. Many of these technologies and 
innovations are relatively new and lack large-scale evidence of their efficacy. Still, the trajectory 
of change and the opportunities are clear. We illustrate many of these opportunities, borrowing 
liberally from our own work as well as others in the field. 

 

II. OVERVIEW OF OBJECTIVE ASSESSMENT OF BEHAVIOR AND FUNCTION USING PERVASIVE 
COMPUTING AND EMBEDDED SENSING 

 A useful way to conceptualize potential new assessment modalities is to consider the 
domains of function that are most important to health, wellness or wellbeing and then how 
technologies may enhance the capture of relevant data to inform these domains. There are 
several classification schemes of the construct of wellness or wellbeing (e.g., Miller, 2010). Most 
encompass a number of common domains to consider: Physical/Physiological, 
Emotional/Psychological, Cognitive/Intellectual, Social, Spiritual, Occupational, Environmental, 
Cultural and Economic. In this selective review we focus on three key domains: 
Physical/Physiological, Cognitive/Intellectual, and Social Behaviors. Of course, many of the 
behaviors that we discuss may fall into or cut across multiple categories. For example, when 
discussing objective means to measure social behavior, we present the use of driving sensors 
which can track the details of a person’s driving habits. By tracking places visited, it would be 
possible to build a model of socialization and social habits. However, driving capability can also 
be related to cognitive function, and by assessing characteristics of driving over time (frequency, 
distance traveled, routes taken), it may be possible to detect declines in cognitive function that 
are associated with variations in driving patterns. For simplicity of this review, we cover each 
behavior in only one section. This review also focuses more on technologies and approaches 
that are currently available with an eye toward those approaches that might be closer to 
scalability in population studies within the next few years. Details surrounding issues such as 
implementation schemes, costs and data handling are beyond the scope of this overview. 
 
1. Physical/Physiological Function 
 One of the most important indicators of health and wellbeing is the physical and physiologic 
function of the individual. Physical function in this context represents an individual’s ability to 
perform physical activities such as walking or climbing a flight of stairs. In contrast, physiologic 
function relates to the proper functioning of the body and organs. The two variables are highly 
interrelated as physiologic variables such as high blood pressure are typically closely tied with 
physical variables such as increased weight or an inability to walk long distances.  

 The importance of physical function is evident in the fact that individuals with greater physical 
ability are less likely to be admitted to a nursing home [2], have a reduced fall rate [3, 4], and 
are less likely to develop cognitive decline [5, 6]. In addition, physical activity is linked to 
numerous aspects of health and wellbeing such as self-rated health [7], cardiac function [8], and 
functional independence [9]. Traditionally, physical function is assessed with tests such as the 
Timed Up and Go (TUG) where the time to rise from an chair, walk out 3 meters and come back 
and sit down is recorded [10, 11]. These tests are currently performed biannually by the HRS. 
The importance of basic physiological functions are well known. In routine practice each time a 
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patient visits their doctor, their blood pressure, heart rate, respiration rate, and weight are 
commonly collected. Changes in these vital signs may herald the onset of diseases such as 
hypertension or cardiac failure.  

 Because of the importance of these kind of metrics for health and wellbeing, a substantial 
amount of research has been devoted to continuous tracking of both physical and physiological 
function. By developing and implementing techniques to continuously monitor these metrics, it 
may not only be possible to detect the earliest warning signs of disease, but may also improve 
outcomes for individuals already diagnosed with a disease. For example, continuous monitoring 
of heart rate may improve outcomes for those with cardiac failure or other heart conditions while 
continuous monitoring of walking speed may herald changes in the fall risk of the individual. In 
this section we review metrics of various physical and physiologic functions that can be 
assessed more continuously and the techniques that have been developed to track them. 

Weight and body mass index 

 Weight is possibly one of the simpler metrics for continuous assessment. The development 
of ‘smart scales’, such as the BodyTrace (BodyTrace, Inc New York, NY) or the Withings Smart 
Body Analyzer (Withings, Inc, Cambridge, MA) that upload each weight reading to the cloud 
service of the manufacturer makes it possible to continuously track weight simply by placing a 
scale in the home environment. Studies testing the reliability of such smart scales have found 
high concordance between the in-home measured weight and the weight measured in the clinic 
demonstrating high reliability of in-home scales [12]. However, this technique relies on each 
individual to weigh herself at regular intervals which may not be a realistic expectation, 
especially as the frequency of weighing is tied to current body mass index [13]. In addition, 
many scales require a steady weight reading requiring the participant to stand quietly on the 
scale before outputting a result. Among older adults (especially those with balance issues), it 
may be difficult to maintain a steady posture long enough for the scale to register a reliable 
weight and output the weight to the cloud. Nevertheless, given the ease of deployment and data 
retrieval and the reliability of the weight data, an in-home wireless scale to frequently assess 
weight or body mass may be an important advance for studies to implement in order to regularly 
and objectively assess this basic health indicator at a higher resolution. 

Heart Rate 

 Heart rate or pulse is a critically important physiological parameter. For example, temporal 
changes in resting heart rate may portend future morbidity or mortality [14]. Assessing heart rate 
during sleep is also important as heart rate may slow or stop in conditions such as sleep apnea. 
Detecting heart rate during sleep will be discussed in the section on sleep, below. Here we 
discuss various ways researchers have developed to assess heart rate using both wrist-worn 
devices and in-home sensor platforms focused more on continuous monitoring potential. 
Snapshots of heart rate or pulse can be obtained using smartphones with several apps that are 
freely available for Android and iOS devices (e.g., 
https://play.google.com/store/search?q=heart%20rate%20monitor&c=apps&hl=en), but 
currently most older adults do not own or use these devices.  

 Multiple wrist-worn devices exist that can assess heart rate whenever the device is worn [15]. 
Among athletes, such devices are especially appealing as they enable the athlete to monitor 
their heart rate throughout exercise, which may help accomplish specific fitness goals. However, 
these devices typically require the user to remove the device to charge it regularly, which may 
make them problematic for older adults or those who are less motivated who may subsequently 
forget to put the device back on. Thus, other techniques to assess heart rate have been 
developed. For example, the smart scales discussed above can have the ability to sense heart 
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rate whenever the user steps on the scale, provided there is nothing between the scale and the 
feet (the subject must be barefoot). One advantage of this approach is the participant does not 
need to remember to place the device back on the wrist regularly. Still, this approach has the 
same disadvantages discussed under Weight and body mass index above in that participants 
may forget or avoid weighing themselves. In addition, participants with pacemakers cannot use 
this scale barefoot because of possible effects of external electrical currents on pacemaker 
function.  

 Other groups have developed techniques to continuously assess heart rate using WiFi 
sensors placed strategically throughout the home [16]. For example, by emitting a low power 
wireless signal and measuring the time it takes for the signal to reflect back, Vital-Radio can 
detect both the heart rate and breathing rate of individuals who are holding still in their home 
environment. The system takes advantage of the minute changes in chest motion during 
breathing and heart contractions. Thus, while breathing in, the chest cavity expands, reducing 
the reflection time for the wireless signals. After exhalation, the chest returns to its resting 
position and the reflection time increases. This causes a sinusoidal reflection time signal, from 
which respiratory rate and heart rate can be extracted. This approach has numerous 
advantages over other approaches in that it does not require any body-worn devices or 
interaction from the participant. In addition, it can detect both the heart rate and respiratory rates 
of multiple individuals at the same time, making it ideal for multi-person scenarios. However, the 
technology is still in its infancy and requires additional testing and validation before it could be 
deployed at scale. Thus, currently the best approach to longitudinal pulse monitoring which 
balances user interface with functionality may be a wrist-worn device which can monitor the 
heart rate while optimizing battery life and data transfer. 

Walking Speed and Steps 

 Walking speed has been called “the sixth vital sign” [17]. Because walking speed is closely 
related to scores on the functional mobility measure, the Timed Up and Go test, many groups 
have developed techniques to assess this key behavior objectively. Assessing walking speed 
objectively and more continuously overcomes several shortcomings of clinic-based 
assessments: lower frequency of observation, cost of clinic visits or home visits by researchers, 
and the possibility of change in walking speed in a clinical setting [18]. Frequent measurements 
are key because there is a large amount of variability in walking speed that could mask long-
term trends if not sampled often enough [18].  
 Approaches to assessing walking speed objectively include in-home sensing platforms [19, 
20], wrist-worn or body worn accelerometers [21-23], gyroscopes [24] and GPS systems [25]. In 
our own research we use an array of four motion sensors aligned in a straight line on the ceiling 
of a participant’s home to estimate the participant’s walking as they walk through the array of 
sensors [20, 26]. Because this approach captures walking speed each time the participant 
passes through the line of sensors, multiple estimates of walking speed can be collected each 
day. Thus, instead of having a single yearly estimate of walking speed, it is possible to have 
thousands of estimates of walking speed over the course of a year, allowing researchers to 
track trends and changes in walking speed and their relationship to various outcomes of interest 
[20, 27, 28]. Other in-home approaches to walking speed assessment have employed a Doppler 
radar system [29, 30] or a Kinect (Microsoft, Seattle WA) [31] placed in a hallway of the home. 
These systems also track variables such as step time and stride length. 
 Additional approaches designed to assess walking speed or steps per day require 
participants to remember to wear a device - a major shortcoming in older adult populations 
where cognitive impairments may make it challenging to remember to wear a new device. The 
rapid evolution of wrist-worn devices, smartwatches or fitness bands, will likely make this 
approach a more feasible component of mobility assessment in the future as power 
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requirements and usability improve. An alternative avenue will be to employ smart phone 
applications such as Moves (ProtoGeo Oy, Helsinki, Finland) or Noom Walk Pedometer (Noom 
Inc, New York, NY USA) which continuously track variables such as number of steps, walking 
speed, distance traveled, and calories burned while a phone is carried. As noted above, older 
adults have been slow to adopt new technologies such as smart phones [32]. However, as the 
baby boomer generation ages (a generation with higher smartphone adoption), the next 
generation of longitudinal studies may increasingly find use of an array of smart phone 
applications designed to intermittently, but frequently assess variables such as walking speed, 
calories burned, step count, and distance traveled while carrying the phone.  

Pain 

 Another key functional outcome of interest is the level or intensity of pain that may be 
experienced with aging. Pain is not only an unpleasant state to be in, when chronic it can 
contribute to multiple negative health outcomes including poor sleep quality [33], reduced 
cognitive function [34], negative mood [35], poor cardiovascular health [36], and reduced quality 
of life [37]. Traditionally, pain is assessed through self-reports such as numerical rating scales 
(rated on a Likert scale from 0-10), the “FACES” scale (pain is rated on a scale from 0-5 with 
pictures to help explain what each level of pain expression looks like), or the verbal pain 
intensity scale (participants rate pain on a scale from ‘no pain’ to ‘worst possible pain’ where 
each intermediate level is given a description) [38]. However, self-report of pain may be biased 
as individuals may intentionally over or under estimate their level of pain [39]. To move away 
from using self-report to assess pain, a large body of research has focused around more 
objective pain assessment protocols such as assessing the frequency of ‘pain behaviors’ [40-
43]. Pioneered by Keefe and Block this pain behavior research typically revolves around 
counting the frequency of specific behaviors related to either the expression of pain to others or 
the preservation of the body when experiencing pain [44]. Five key behaviors are typically 
studied: (i) ‘guarding’, where movement is observed to be abnormally slow or stiff, (ii) ‘bracing’, 
where the participant is observed to distribute their weight in a non-uniform fashion to alleviate 
pressure in the pained area, (iii) ‘rubbing’ where the participant touches, rubs or holds the 
painful part of the body, (iv) ‘grimacing’ where the participant makes an obvious facial 
expression of pain, and (v) ‘sighing’ where the participant exhales a large volume of air. The 
frequency of such pain behaviors is more closely related to the self-reported level of disability 
due to pain than the self-reported level of pain intensity [41]. This suggests that assessing pain 
by evaluating pain-related behavior may provide a measure of pain intensity that is more 
immune to a participant’s tendency to under or over-report pain. However, this objective 
measurement of pain is highly time-consuming as participants must be recorded on video, and 
trained clinicians must score each video for the occurrences of the five pain behaviors. Thus, 
while this may overcome some shortcomings with self-report, it does not enable pain 
assessment regularly over long periods of time. It is not scalable. 

 In our research, we have used in-home sensing platforms to more continuously assess pain 
intensity related behaviors in older adults such as in-home walking speed and time out-of-home, 
both of which are reduced when people self-report higher levels of pain. This finding is 
consistent with the presence of ‘guarding’ behaviors when people are in pain. Still, a completely 
unobtrusive and continuous technique to assess pain intensity frequently is not yet fully 
validated. However, given the importance of pain intensity for numerous health outcomes in 
older adults, querying pain levels more often than biannually may be an important, advance 
especially as the self-report of past pain is highly affected by current pain [45].  

 One way to increase the frequency that older adults are queried about pain (as well as other 
internal states, health status and life events) is to ask a question regarding pain online. We have 



7 
 

found among elders (mean age, 83) online that brief (force-choice) responses to a number of 
relevant life events including pain in the past week are reliably completed on a weekly basis 
over a year or more [46]. Among other questions, we query participants through an emailed 
questionnaire where they report their pain intensity in the last week (Likert Scale) and the 
degree to which their pain interfered with their regular activities of daily living. This technique to 
pain assessment relies on the participant to regularly check their email and answer the 
questions on the form. Currently, this frequent query may not be easily achieved in large panel 
surveys such as the HRS, especially among the oldest old. Nevertheless, it is anticipated that 
the number of older adults online will continue to grow steadily. Notably, even almost a decade 
ago, among those HRS participants who reported using a computer, there was a high 
acceptance rate to completing web based surveys, indicating the applicability of the approach 
for all participants who use a computer (30% of the HRS cohort in 2007 [47]). Because pain is 
ultimately an internal, subjective experience, this approach would allow for the tracking of 
changes in pain levels over time within the same individual, but may not as readily allow 
comparisons across individuals. Still, the increased sampling rate of this approach may enable a 
large array of new research for example into longitudinal trajectories of pain over time, how pain 
levels change immediately after retirement or full time employment, or how the perception of 
pain changes surrounding major life events like the loss of a loved one.  

Falls 

 Falls among older adults can have serious consequences. Common disorders such as 
osteoarthritis can make bones brittle and more likely to fracture during a fall. Unfortunately, a 
major fall which results in a fracture can lead to serious injury, hospitalization, nursing home 
admission or death. A hazardous environment, the use of certain medications, gait and balance 
disorders, and even poor cognitive function can lead to increased risk of falls among older 
adults [48]. Because falling is a relatively infrequent event, the precise frequency of falling may 
not be remembered over the long term, especially over the 2 year sampling intervals that HRS 
has employed. Thus, reducing the time between querying older adults about whether or not they 
have fallen may improve the estimation of frequency of falls. This would enable understanding 
of common triggers of falls, the frequency of falls among older adults with various health 
conditions or even the trajectory of falling frequency over time. 

 One way to increase the frequency that older adults are queried about falls is to ask a 
question regarding falls online. This may become more effective with as noted, continued 
growth in the older online population with recent surveys reporting that approximately 60 per 
cent of those over 65 go on-line [32] (although this frequency drops considerably in the old old). 
As also noted above, we have found that among elders (mean age, 83) online, brief (force-
choice) responses to a number of relevant life events including pain (see above) or falls in the 
past week were reliably completed over a year or more on a weekly basis [49]. In this approach 
any participant that answers in the affirmative has the opportunity to enter text to describe the 
conditions around the fall and any negative health outcomes or injuries that occurred as a result 
of the fall. In this fashion, one may gain detailed information about each person’s frequency of 
falling and the conditions associated with the fall. 

 Another method to improve fall detection might be to employ a fall detection device. This 
remains an active area of development focused on developing body worn devices that 
automatically detect when the wearer of the device falls. Many of these are commercially 
available and used in the setting of personal emergency response systems (PERS). However, 
independent objective evidence for their ability to capture falls reliably is not widely available 
[50]. For the longitudinal health surveillance surveys where intervention and PERS are not 
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appropriately deployed, the simple query of participants at more regular intervals may be the 
most practical near term future direction to improve the accuracy of estimating fall frequency. 

2. Cognitive/Intellectual Function 
 Cognition is the ability to process information, apply knowledge, and develop mental 
representation based on experience and is vital at any age. The MacArthur Research Network 
on Successful Aging characterizes successful aging as freedom from disability and disease 
coupled with high cognitive, physical, and social functioning [51]. A review of publications about 
optimal aging found cognitive function to be the second most important predictor of aging well, 
preceded only by physical disability [52]. Intact cognitive function is critical to preserving 
independence and a high quality of life. Cognitive impairment is among the strongest predictors 
of institutionalization among non-demented elderly individuals [53].  

 Cognitive assessment surveys are often carried out using screening tools such as the Mini-
Cog or GPCOG (General Practitioner Assessment of Cognition) [54]. These tools have two 
major disadvantages. They are typically performed in an unfamiliar environment such as a clinic 
and they may only be performed once a year. The Health and Retirement Study surveys 
currently include some questions about cognitive function, including meta-memory measures 
and memory or recall items (http://hrsonline.isr.umich.edu/sitedocs/surveydesign.pdf). The 
addition of continuous home-based monitoring of cognition would strengthen the capacity to 
capture real-world cognitive function which has been called “everyday cognition”. Importantly, 
this ability to assess inherently cognitively laden activities in the course of daily routine provides 
a unique opportunity to bring ecological validity to the assessment. In this context, we discuss 
various tasks and routines that can be objectively assessed at home to index cognitive function. 
These include walking (speed), medication taking behavior (medication adherence; prospective 
memory), computer use, and sleep.  

Walking Speed 

 While walking may seem automatic or ‘mindless’, this task requires a large amount of 
cognitive engagement. This is evident in the difficulties people have with walking when they 
develop cognitive decline or have a cognitive load of some kind (e.g. “talking while walking”; 
trying to walk while counting backward from 100 by 7’s). As a result, walking speed is frequently 
assessed during cognitive assessments as one of a multitude of indicators of cognitive decline. 
Indeed, continuous assessment of walking speed has revealed that slowed walking 
independently predicts later disability and loss of independence [55-57] as well as dementia 
consistent with Alzheimer’s disease [58-61]. We have reviewed techniques to assess both 
walking speed and number of steps in the section on Physical Function as this variable relates 
to both cognitive function and physical ability. Briefly, walking speed can be assessed using 
wrist-worn devices such as wrist-worn or body worn accelerometers [21-23], GPS-based 
devices [25, 62] and in-home sensor platforms [20, 31, 61]. Using such systems, it has been 
demonstrated that walking speed as well as variability in walking speed is an indicator of 
cognitive decline [61, 63]. 

Medication Adherence 

 Medication taking is a routine part of daily life for most elderly [64]. It is a prototypical 
everyday cognition task as adhering to a medication regimen involves a number of cognitive 
capacities including executive function (organization, planning); and prospective memory, 
among other functions [65]. Impairment in these functions may be reflected in poor medication 
adherence [66]. Thus, tracking medication taking routines forms a means of assessing cognitive 
function over long periods of time in a person’s familiar home environment.  

http://hrsonline.isr.umich.edu/sitedocs/surveydesign.pdf
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 Unobtrusive, passive techniques for tracking 
medication adherence are vital to using this daily activity 
to assess cognition. Self-reporting of medication has 
been found to be unreliable, with an accuracy of only 
43% [67]. One approach for continuous monitoring of 
medication taking behavior is to use common pillboxes 
that have been instrumented to electronically report 
when compartments for each day of the week are 
opened [68]. This approach has the advantage of being 
relatively inexpensive and familiar to many older adults.  
An example of such a device, called the “MedTracker” 
that tracks this important behavior is shown in Figure 1. 
In a study using the MedTracker, independently living older adults were divided in two groups: 
one with high cognitive function and the other with low cognitive function. Members of the low 
cognitive function group had significantly worse adherence to a twice daily vitamin regime when 
compared to the high cognitive function group, indicating that medication adherence is related to 
cognitive function [69]. An example of data collected from the MedTrackers is shown in Figure 
2. In this figure, we have plotted the medication taking events as recorded from MedTrackers in 
two different participant homes. Each participant takes their medications from the device twice a 
day, and the colors represent the clustering of each medication event into either the morning 
cluster or the evening cluster. As can be seen, the participant in Figure 2a has high adherence 
and high consistency in the time of day medications are taken. In contrast, the participant in 
Figure 2b frequently skips medications and is inconsistent in the time of day they take their 
medications.  
 Other methods of tracking medication are being developed commercially using sensor-
tagged pills that send a signal after ingestion to a patch worn by the person. These systems, 
unlike electronic pillboxes, more closely ensure that the medication is ingested since opening 
the compartment of the pillbox only provides inference that the medication was removed from 
the box and does not guarantee that a pill was swallowed. However, the widespread use of a 
tagged pill system would require all available pills to be tagged before the approach could be 
practically applied widely among population studies. Finally, it is important to realize that 
regardless of method of tracking implemented in a cohort or population study, medication 

 
Figure 1: MedTracker pillbox 

 
Figure 2: Circular plots of medication taking patterns from two individuals over the same 3 month period. The data are plotted 
as a 24 hour clock, with midnight at the top and noon at the bottom. The solid black circles mark one week boundaries. Both 
participants reported taking medication at two separate times, and the two colors represent the clustering of each medication 
event into one of these two times. The corresponding bounding lines represent the interquartile range of the spread of the 
data. A clear regularity in medication taking can be seen in plot (a) whereas in plot (b), the participant is considerably more 
sporadic at taking their medication and frequently forgets to open the pillbox at all for an entire day.  
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regimens change frequently. Thus effective collection of this kind of data requires additional up-
to-date information regarding the schedules and actual medications taken.  

Computer Use  

 Using a computer and navigating the internet are cognitively challenging tasks, requiring 
multiple cognitive capacities including attention, working memory and executive function. 
Assessing how older adults interact with computers can offer new insights into their cognitive 
function. Computer use, as noted, is increasing among the older population, with over 50% of 
seniors using the internet [70]. Aspects of computer use that can be monitored include time 
spent on the computer or in specific tasks, time to complete web-based surveys, terms 
searched for in search engines such as Google, and facility with a computer mouse and 
keyboard. Although many formal cognitive tasks or tests may be presented through the 
computer interface, these are not reviewed here. Interested readers may refer to Wild et al [71], 
Woo [72], and Zygouris [73] for reviews of computer-based cognitive testing. 

 The overall way an individual interacts with the computer may be related to cognitive 
function. In addition to monitoring behaviors while completing a web based survey, software can 
be installed on computers to track higher level computer behaviors such as applications used 
and websites visited. Using such software, we found computer use patterns among those with 
mild cognitive impairment (MCI) differed from age-matched cognitively intact older adults [74]. 
The MCI participants tended to use the computer less often and for shorter periods of time. 
They also reported less confidence and more anxiety about working with the computer [75]. 
Computer games have also been designed for the purpose of cognitive assessment [76]. Thus, 
it may be possible that those individuals with cognitive impairment will spend less time in 
cognitively engaging activities such as games than cognitively intact individuals. This aspect of 
computer use will be discussed further under Socialization below. Other aspects of computer 
behavior that may relate to cognitive function include online banking, social interactions, and the 
terms searched for on the Internet. These methodologies require important consideration with 
regard to privacy and security to manage effectively over time.  

 Web-based surveys have already been successfully incorporated into the HRS [47] to collect 
information about HRS participants. In addition to obtaining important participant content via the 
computer, survey-taking habits while providing this information may be useful to capture as well. 
In our own research using a weekly health form with 100 older adults, we found that 
respondents who had MCI started their survey later in the day and took longer to complete the 
survey than those without such impairment [77]. This may be due to the cognitive challenges 
associated with reading and understanding the questions or with moving the mouse from one 
question to the next. It may also be that those with cognitive impairment spent more time 
formulating descriptions of items they endorsed, for example describing the trip they went on in 
the last week. Other work has found older adults with MCI spend a higher percent of time in a 
conversation talking than cognitively intact older adults [78]. This may carry over into survey 
responses as well.  

 Beyond answers provided to a survey, a participant’s interaction with a computer keyboard 
and mouse can be assessed [79, 80]. Again in our own research on older adults who completed 
an internet-based weekly health form, MCI was found to be associated with making fewer 
mouse movements which were also less efficient than the mouse movements made by those 
without cognitive impairment [79]. Motor speed is an indicator of cognitive function and has 
been commonly assessed using finger-tapping tasks. Typing speed has been found to be a 
suitable analogue of finger tapping which can be captured by assessing the speed of typing a 
double letter [81]. Measuring typing speed (or other functional computer input tasks) has several 
advantages because the information is collected at more regular intervals outside a clinic or 
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study visit. The data can be collected at a higher frequency and reflects a more natural task 
than finger tapping. Further, one may combine assessment approaches: surveys that might be 
regularly delivered (such as the weekly health and activity survey discussed above) to capture 
important self-report data can also be used as an opportunity to assess keyboard and mouse 
behaviors while the individual is completing the survey. 

 For a number of reasons, computer use monitoring may be a very effective assessment tool 
for longitudinal studies such as the HRS. Because many seniors increasingly need to use the 
internet to conduct business or find vital information, a growing variety of participants may be 
engaged in computer use. As computer use becomes a more routine activity of daily living, it 
lends itself to being studied continuously for long periods of time. By assessing this behavior 
longitudinally, it may be possible to detect cognitive changes or trends as they happen. There 
are challenges to this approach. If computer-based assessments are incorporated into survey 
studies they will require a secure information technology infrastructure to handle the installation 
and maintenance of software. In addition, study participants will likely need to be instructed 
about procedures, and systems will need to be put in place to manage and analyze what will be 
potentially large amounts of data.  

Sleep 

 Sleep quality is closely linked with cognitive function and monitoring sleep patterns offers 
important information about the well-being of aging citizens. Normal aging is associated with 
many changes in sleep patterns such as increasing sleep fragmentation, insomnia and difficulty 
falling asleep [82]. These changes in sleep patterns affect cognitive performance even in 
healthy older adults [83]. This is of concern because poor sleep quality is associated with a 
variety of health concerns, ranging from an increase in falls to cognitive changes [84] and 
depression [85]. Importantly, inadequate sleep has been shown to be correlated with increasing 
amyloid beta concentrations which may culminate in Alzheimer’s disease [86]. Thus, monitoring 
sleep may offer a valuable window into the cognitive status of the elderly population. 

 There are two traditional methods for assessing sleep quality: polysomnography and sleep 
logs. Historically, objective sleep monitoring has involved polysomnography. In this technique, 
participants are required to sleep overnight in a sleep lab while being connected to multiple 
monitors including electrocardiographs (EKG) which measure heart rate, 
electroencephalographs (EEG) which measure brain waves, and electromyographs (EMG) 
which measure muscle movements [87]. Using this array of sensors, analysts are able to 
reliably determine key sleep variables such as the sleep stage (I-IV or REM) and number of 
arousals. However, the sheer number of electrical leads attached to the participant may 
interfere with normal sleep patterns. In addition, the equipment and personnel required to 
operate the sleep lab make this approach expensive. Finally, participants cannot be monitored 
for more than a few days in a row so analysis of changes in sleep patterns over time is not 
possible. 

 Sleep logs and questionnaires are also often used to assess sleep. However, questionnaires 
have some disadvantages. First, self-reported data is known to be unreliable [88-92]. In a study 
comparing a two-hour self-reported activity log with activity recorded by in-home sensors, Wild 
et al. observed that nearly one-quarter of the reports were incompatible with the sensor data 
[93]. When compared with polysomnography, subjects filling out sleep reports tended to 
significantly underestimate the number of night awakenings experienced [94]. In addition, 
maintaining sleep logs and filling out regular questionnaires also can be a burden on study 
participants and is impractical for long-term data collection. Less obtrusive continuous 
monitoring of sleep can address many shortcomings of traditional sleep assessment methods. 
Examples of such monitoring methods include actigraphy, bed-based sensors, and infrared 
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sensors. These methods allow for continuous monitoring of sleep in the home environment over 
long periods of time. 

 Actigraphy uses accelerometers or actigraphs, devices generally worn on the wrist or ankle 
which detect acceleration. These are identical in principle to those used to assess mobility or 
ambulatory activity discussed above in the section on assessment of physical behaviors. 
Actigraphy is relatively sensitive in detecting sleep patterns associated with sleep disorders and 
medical or neurobehavioral disorders [95, 96]. When worn over the long periods of time, 
actigraphy can be used to gain information about a subject’s circadian rhythms [97], which may 
change with age. In addition, while many methods for detecting sleep in the home only work if a 
participant is sleeping in the bed alone, actigraphy can work for any number of persons sleeping 
together, and for sleep occurring in any room of the home. This is ideal for older adults who may 
regularly sleep in the living room, for example. While an inexpensive option, actigraphy does 
have some disadvantages. It requires the participant to remember to wear the device every 
night which may be problematic among older adults, especially those with cognitive or memory 
impairment. Actigraphy also only detects movement by the limb on which the device is worn 
which may be an inaccurate indicator for some people. While there is a growing market of body 
worn devices that include an accelerometer which enables the opportunity to infer nighttime 
behaviors and sleep, the validation of these devices is currently limited in aging populations.  

 Bed-based sensors are devices such as bed mats and load cells which detect movement in 
bed. Bed mat designs use thin pneumatic cushions or pressure mats to detect changes in 
pressure across the cushion or mat [98]. By detecting changes in pressure, these systems may 
reliably detect motion (and thus may be able to infer total sleep time), but are of variable 
sensitivity to more specific aspects of sleep behavior such as sleep quality or sleep stage [99]. 
Bed mat systems may be disturbed by changing of bed linens and could be affected by 
differences in mattress and bed designs. Also, for the bed mat to record sleep, the participant 
must sleep on top of it. Thus, for those who may regularly fall asleep in the living room, this 
approach would not be effective. Load cells are another bed-based sensor used to measure 
sleep unobtrusively [100]. Load cells are typically installed under each leg of a bed to detect 
movement in the bed. When compared with polysomnography, the load cells had a sensitivity to 
movements of 97.5% [101]. Load cell data can also be used to classify sleep and wakefulness 
during the night with a sensitivity of 0.80 and specificity of 0.81 [102]. Similar to pressure mats, 
this method does not provide detailed information about sleep posture or night-time activities 
and sleep estimates can be affected by differences in bed design or mattress style. 

 Infrared motion sensors provide another unobtrusive method of studying night time behaviors 
[103, 104]. By placing sensors in each room of a participant’s home, it is possible to track an 
individual’s movement throughout the home. Using this sensor platform, we developed a rule-
based system that tracks the movement throughout the home and determines key variables 
such as time in and out of bed at night from the interaction of the sensors throughout the home. 
Using this system, we validated the accuracy of sleep time calculated from the firing of these 
sensors by comparing it with the sleep time detected by bed mats placed under the bed. We 
found the estimates of sleep time from the rule-based sensor system correlated highly with the 
estimates from the bed bats, with correlation coefficients of 0.99 for bed time and 0.96 for rising 
time [103]. Of course, the system assumes that the participant sleeps in the bedroom (not other 
rooms) and thus may provide inaccurate estimates of total sleep time for any participant who 
regularly sleeps in other rooms of the house. Further, because the system relies on data from all 
sensors in the house, it requires that all other sensors in the home are installed and functioning 
properly to generate accurate estimates of total sleep time. Despite these shortcomings, this 
approach has the unique advantage that nighttime behavior can be tracked throughout the 
home. Thus, it is possible to determine other nighttime behaviors aside from total sleep time 
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such as number of bathroom visits. Because bathroom visits may increase as a function of 
certain diseases such as urinary tract infections [105], tracking this behavior may be highly 
important in older adults.  

 At this time, the best option for continuous sleep or night-time behavior monitoring in large 
scale studies such as the HRS may be actigraphy due to its low cost and relatively reliable 
measurements. However, this assumes that challenges of any wearable are accounted for such 
as comfort level, form factor, need for charging, and access to the Internet or cellular systems 
for data upload. Reminders may have to be designed to assist the study participants in 
remembering to wear the devices and to charge them when necessary. 
 

3. Social Behaviors and Function 
 Individuals who are more socially active - those who participate in a high frequency of social 
activities - generally exhibit numerous positive health effects from this activity including higher 
self-rated health [106], lower all-cause mortality [107-109], and decreased risk of cognitive 
decline [110-112]. Further, those who perceive more support from others exhibit similar positive 
health effects [113-115]. This may be in part because the social network encourages members 
to engage in positive health behaviors [116, 117] while providing support or resources when 
issues arise [118]. In addition, the social network may provide purpose and meaning to the 
members, which increases life satisfaction [119]. Thus, socialization and the social network are  
critical aspects of behavior to monitor. In the long term, by continuously assessing social 
network and changes in social network over time, it would be possible to understand the 
complex relationship between the social network and health. For example, Christakis et al. have 
developed longitudinal models looking at the spread of variables such as loneliness [120], 
obesity [121], and smoking behavior [116] through the social network. Continuous monitoring of 
the social network using telephone data could enable such studies in the older adult population 
as well - a population where self-report may not be as reliable due to cognitive changes. Such 
data may also enable the prediction of future onset of loneliness or other negative health 
outcomes. For example, using data from the Cardiovascular Health Study, we demonstrated 
that deviations in the level of social isolation were linked to reports of loneliness [122]. Other 
studies have discovered that changes in the social network, especially losses of social network 
members, are tied to future health changes [123, 124]. 

 The relationship between socialization and health is especially important in the elderly 
population. Normal life changes in old age including retirement, the death of friends or family 
members, decreased health, and an increased probability of living alone make this population 
particularly vulnerable to social isolation and feelings of loneliness. Unfortunately, social 
isolation and loneliness are both accompanied by serious negative health outcomes including 
increased morbidity and mortality similar to that of smoking [108], increased risk of cognitive 
decline [125, 126], and poor sleep quality [127, 128]. Currently, the HRS study assesses an 
individual’s level of social isolation and loneliness using surveys such as the 4-item UCLA 
Loneliness Survey [129]. However, as noted previously this assessment protocol may be 
subject to desirability bias [130, 131], memory problems [132], and under or over estimation 
[133]. Thus, continuous assessment of social behaviors may be increasingly important, 
especially among older adults. While it is not possible to continuously assess all aspects of 
socialization, at least not without major privacy concerns and data collection challenges, there 
are several key aspects of social behavior that can be assessed largely unobtrusively, non-
invasively, and continuously.  
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Time Out of Home 

 The total amount of time spent outside the home has been demonstrated to be associated 
with both loneliness and social isolation [28, 134]. Out-of-home behavior has also been linked to 
cognitive wellbeing [25, 135]. Historically, researchers have used surveys such as the time use 
survey and the life space questionnaire to query activity such as the total hours spent outside 
the home, the number of places visited while out, or activities performed inside and outside the 
home [136-139]. To overcome the biases associated with self-report, techniques have been 
developed to monitor this social variable using an in-home sensor platform which includes 
motion sensors in each room of the home in addition to contact sensors on the doors of the 
home [134]. By monitoring the total time spent outside the home longitudinally over the course 
of one year, it was demonstrated that time spent outside the home is linked not only to cognitive 
and physical ability, but also to emotional state, demographic variables, and the weather [28]. 
This system has the advantage of requiring very little effort on the part of the participant. That is, 
participants are not required to carry or wear a device (something that can easily be forgotten), 
but may instead go about their usual routine. In addition, the sensors are non-invasive as they 
do not take pictures or provide any identifying information about the participants. This approach 
has been reported to be well received with high acceptance rates among older adults [140].  

 Other approaches monitor time out-of-home with GPS sensors [25]. Because GPS sensors 
not only monitor the total amount of time spent outside the home but also the specific places 
visited and routes chosen, they are especially useful at tracking social activities. By overlaying a 
map of the area with the GPS data from each participant, it is possible to infer the types of 
activities that are performed while outside the home. This may also enable researchers to 
understand how far older adults travel to access resources, an especially interesting question as 
research has demonstrated that older adults’ perception of the availability of resources may 
affect their life satisfaction, wellbeing and overall health [141]. The neighborhood environment 
has also been linked to the rate of cognitive decline, where more walkable or resource-rich 
neighborhoods are associated with a slower rate of decline [142, 143]. Previous studies using 
GPS for out-of-home monitoring required all subjects to wear and charge a GPS watch [25]. 
This technique may be perceived as cumbersome as it requires participants to remember to 
carry the device with them - a device they did not need to remember before enrolling in the 
study. Thus, the future of GPS-based monitoring would involve installing the GPS software on a 
device participants already regularly carry with them, for example a mobile phone or a 
smartwatch. Some research groups already use GPS cell phone applications to continually 
monitor the locations visited by their research participants [144, 145]. However, currently, this 
approach rapidly drains the device’s battery, and may cause acceptance problems if 
participants have to regularly charge their phones or watches frequently during the day. A less 
battery draining system might instead rely on WiFi signals to pinpoint location outside the home. 
This approach would trade battery life for precision, but may still be suitable for continuous, 
longitudinal location monitoring in areas where WiFi networks are available.  

 Finally, it should be mentioned that there are some monitoring scenarios that provide partial 
out-of-home activity assessment that involve monitoring driving behavior. This approach relies 
on the installation of a telematics sensor in the participants’ automobile data port (present in 
cars sold in the US since 1996). Commercially available systems (e.g., Automatic (San 
Francisco, CA, USA) or Dash (New York, NY, USA)) provide a means to tap into the data port of 
a car and transmit all data collected to a phone via Bluetooth. Data collected include real-time 
speed, route driven, and number of stops. Over 35 million people ages 65 or older drive in the 
US; this approach would enable real-time monitoring of locations and out of home activities 
visited via automobile for those who do drive, or for those who are regularly driven by others in a 
consistent car. 
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Phone Use 

 Telephone use may be a very useful 
window into social behavior and interaction. 
Using both in-home phone sensors and call 
logs from wireless companies, we have 
demonstrated that the total number of 
incoming calls is linked to both loneliness 
[146] and cognitive function [147]. But the total 
number of calls is not the only social behavior 
that can be assessed unobtrusively through 
continuous monitoring of phone use. Because 
people use the phone to call their social 
network members, continuous monitoring of 
the number dialed would enable objective, 
longitudinal monitoring of various aspects of 
the social network including its overall size, 
the frequency of contact with the social 
network, and relative closeness with network 
members as shown in Figure 3. In this Figure, 
we have plotted the egocentric social network 
of 12 adults whose call logs were collected for 
a two month period. Each participant is displayed as a green node, and the individuals they 
regularly call are shown in purple. As can be seen, it is possible to assess both the network size 
and closeness (in terms of call frequency) of the network members using this monitoring 
technique.  

 In our research we have found that currently the older population is mixed in its use of 
landline and mobile phones. For landline monitoring, we have used in-home phone line sensors 
(Shenzen Fiho Electronic, Fi3001B) to continuously monitor the landline telephone use of the 
older adults. These sensors function by plugging into the phone line and recording all signals on 
the line (but not the content of the calls). Possible signals include ‘on hook’, ‘off hook’, ‘dtmf’ 
(which records the number dialed) and ‘ring start’. We have used these sensors to continuously 
track the number of incoming and outgoing phone calls [146]. As older adults are increasingly 
adopting cell phone and smartphones (albeit slowly), an approach that could be used to monitor 
mobile phone use is required. One avenue that shows promise is the continuous monitoring of 
all phone activity through the use of applications that operate in the background such as 
RescueTime Professional (RescueTime, Seattle WA). RescueTime can be installed on all 
Android cell phones, and collects all data regarding application usage, text messaging, and call 
logs. The rich dataset generated can be automatically exported and stored locally for further 
analysis. Unfortunately, currently no similar application exists for iOS systems or non-smart 
phones. Thus, for the purposes of implementation in current population survey studies, 
additional effort is needed to capture this kind of data. This may include partnering with existing 
cell phone companies and downloading the cell phone data directly from the source. For 
telephone companies that do not provide ongoing detailed call logs, it may also be possible to 
download call records for each participant with their consent. That is, the phone companies 
store call logs and most companies allow users to export the last year of call and text data to 
.csv. While we have used this latter procedure in our research, the time and effort required to 
set up each participant with an online account and export the call logs for the past year makes 
this approach more difficult to scale in large national studies.  

 
Figure 3: Egocentric social network graph of 12 participants 
using data from detailed phone logs. Participants are shown 
as green nodes. All purple nodes represent a contact called 
by the participant. The thickness of lines between nodes 
corresponds to the number of calls between the nodes. In 
addition, nodes are sized by the distance from Portland, OR 
(smaller nodes mean longer distance). 
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Computer Use 

 While many aspects of computer use may relate to cognitive function [74, 148] as noted 
above, the computer can also be used as a social medium - sending and receiving email, 
accessing social networking sites, or chatting with friends online [149]. Indeed, several studies 
have investigated whether computer training could be used as an intervention for loneliness 
because the computer, when used correctly, can help reduce loneliness while strengthening 
relationships [150-152]. Because computer use taps multiple domains of wellbeing, it can be 
especially valuable to monitor this behavior continuously. 

 While social aspects of computer use cannot be assessed by monitoring simple physical 
aspects such as mouse and key movements by themselves (discussed above), computer 
software installed on the computer can be used to continuously monitor how the computer is 
being used, e.g. for social or anti-social applications. In our research, we found that using the 
computer for social purposes was negatively associated with loneliness [153]. Others have also 
found that the use of the computer is differentially related to health depending on what activity is 
performed on the computer. For example, using the computer to engage in chat rooms is 
associated with higher loneliness levels, whereas using the computer to email or engage with 
established network members is associated with lower loneliness levels [154]. Installing 
computer use tracking software on the computers of older adults facilitates the ability to 
understand the relationship between computer behavior and outcomes such as loneliness, 
social isolation or cognitive function. In addition, in the process of collecting detailed information 
on the way older adults use the computer and how that changes over time, it may be possible to 
observe a broader spectrum of the dynamics of social networks and interactions across 
generations as well as among familiar or more distant relationships.  

 

III. SUMMARY 
 In this review, we have covered a number of different continuous more real-world monitoring 
applications ranging from wrist-worn devices which can record health behaviors such as sleep, 
heart rate and general activity to potentially more comprehensive in-home sensor platforms 
which can be used to monitor more specific location-based information such as daily hours 
spent outside the home or total time spent in the bathroom. These latter systems provide an 
avenue to simultaneously assess multiple domains in the course of a day over long periods of 
time. A summary of the various continuous monitoring applications and exemplars of behaviors 
or activities they can detect and assess is shown in Table 1. Each assessment strategy has its 
own advantages and disadvantages. For example, while an infrared sensor network or a similar 
WiFi-based platform can assess multiple behaviors and does not require any input from the 
participant, the initial home installation and upkeep required to keep the system functioning and 
outputting high quality data requires a significant infrastructure to implement and maintain at the 
large scale that would be required by the HRS. Despite this front end infrastructure need, 
because of the great potential of this more comprehensive system it is worth considering that in 
the near future, a sub-sample of the HRS be engaged in this more intensive multi-domain 
continuous monitoring approach to lead into what will be next generation assessment methods.   

Wearable devices (which may be integrated into a more comprehensive system or used as a 
more ‘stand-alone’ approach) have many attractive aspects to their use. Many current wearable 
devices can track multiple metrics such as heart rate and walking speed, but require the 
participant to comply with wearing the device regularly. Further, there is a need to customize the 
form-factors of these worn devices to meet the needs of a diverse population. A diminutive 85 
year old woman is unlikely to readily sport the same watch-design as a husky 65 year old man. 
In an older adult population, especially one that may be prone to memory problems, the user 
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interface becomes a serious challenge to the concept of continuous assessment with body worn 
or carried devices. Nevertheless, a substantial subset of participants may increasingly be 
capable of wearing these devices regularly, providing novel high quality longitudinal data on 
functional changes, mobility, sleep habits, heart rate variability, and other key health variables in 
older adults.  

 One possible approach to more continuous assessment that does not require input from the 
user is computer software installed on their computer that runs in the background. Because the 
computer taps multiple aspects of health and wellbeing including social behavior, cognitive 
function and possibly even sleeplessness (e.g., if people are using their computer in the middle 
of the night), this continuous data collection strategy is an important potential adjunct to 
longitudinal assessment. A major consideration however is the large volume of data that may be 
generated using computer tracking software. In our studies of computer use on personal 
computers, each subject generated on average 860 kB of data in one month. Adding mouse 
and keyboard movement dramatically increases the volume of data collected. When looking 
over numerous years and hundreds or thousands of subjects, this may generate an large 
volume of data that would require important considerations in terms of the design of servers and 
databases for data storage and retrieval. Data retrieval and processing could become especially 
cumbersome and time consuming unless a distributed server was used to distribute the 
computation time. This technology is rapidly evolving. Big data of today will be “small data” 
tomorrow. In any event, this technology would enable analysis into unique aspects of specific 
ways older adults use the computer, how their behavior varies by socioeconomic status or 
cultural background, how computer use changes through retirement, and the relationship 
between computer behavior and outcomes of interest such as cognitive function, social isolation 
or loneliness. 

 Although land-line phone use may be informative, another personal computer - the smart 
phone - may also enable more frequent and informative assessment of key behaviors of 
interest. Studies indicate that smartphone (and related technology likely in the future such as 
smartwatches) adoption is on the rise among older adults [32], so smartphone applications may 
become a major, minimally obtrusive monitoring platform of the future. Smartphone applications 
can track the number of steps per day, locations visited each day (via GPS), time in various 
applications, and telephone use. These key behaviors may be related to health outcomes such 
as socialization level, cognitive function, and physical ability. As with any computer software, 
data size and dynamics may be an issue; any application installed would need to be able to 
readily output the data wirelessly to a secure database for further processing and analysis.  

 Devices placed in the home that can communicate wirelessly also enable tracking of key 
health behaviors. For example, an in-home scale can collect weight and heart rate estimates 
each time the participant steps barefoot on the scale. A medication tracking device can enable 
the tracking of the regularity of medication taking or allow researchers to study the relationship 
between health outcomes and medication use controlling for the frequency each participant took 
their medication. These devices could most easily be deployed in the field if a clinician performs 
an in-home visit, such as may occur in the smaller study sections of the HRS. It is also possible 
to mail devices to homes with simple instructions, although one must not overestimate a given 
participant’s ability to follow seemingly simple set-up directions at home.  

 Finally, by adding weekly surveys administered via a now familiar communication medium - 
email - to a routine protocol, it may be possible to gain more detailed information regarding 
events or activities that are difficult to identify with high certainty such as falling frequency, 
medication changes, incident pain levels, or even internal psychological states like loneliness. 
This more regular self-report assessment allows researchers to investigate longitudinal 
interactions between variables, and to better understand the causal relationships between 
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health and behavior as the gap between measurements would not be so long. While many of 
the HRS cohort do not currently use a computer, future waves added to the study are more 
likely to use email and be connected to the internet as trends in computer use continue to rise 
steadily among both older adults and the population as a whole [32, 70]. 

 As noted, this review is not an exhaustive summary of all the different parameters and 
behaviors relevant to health that can be assessed continuously. In addition to continuously 
assessing aspects of the individual and their behavior, it may be possible to monitor key 
population-wide environmental variables such as air pollution or weather. Multiple studies have 
linked air pollution to negative health outcomes such as headaches and asthma [155], which 
may be especially problematic among older adults. Air quality localized in the home can be 
tracked using a wireless scale such as that discussed under Weight. The scale logs the amount 
of carbon dioxide present in the room the scale is located in. Other approaches allow the 
incorporation of data from publically available databases from the Environmental Protection 
Agency which can provide information on air pollution at the zip code level [156] where 
participants reside.  

 The weather also affects behavior: on sunny days people are more likely to be happier and 
have fewer headaches [157, 158]. The weather outside a home affects the movement of older 
adults inside their home [27] and the number of hours spent outside the home [28]. Thus, 
continuous tracking of weather in the location each participant is in may help explain some of 
the variance in scores on measures such as mobility, depression, loneliness, or social isolation. 
Weather data is already stored in publically available databases such as those made available 
by the National Climate Data Center [159]. Thus, HRS would need to only log each participant’s 
area code or city of residence to link the daily weather to the participant. The time the sun rises 
and sets may also be important to log, especially as disorders such as seasonal affective 
disorder (SAD) have higher prevalence rates in the winter. The sunset and rise times are also 
publically available through the US Astronomical Applications Department [160] and can be 
added into models of continuous home-based behavior monitoring. 

  

IV. CONCLUSION 
 Continuous, unobtrusive or minimally obtrusive assessment platforms offer more objective, 
ecologically valid data, providing insight at the individual level that was previously impossible to 
capture. By moving away from reliance on infrequent self-report, the data collected is not biased 
by recency effects (memories of closer events are stronger) or by the desirability biases that 
may frequently occur, especially in reports of depression, loneliness or other behaviors that may 
be perceived as negative. In addition, by increasing the frequency of data capture, a shorter 
time period (e.g. months or years instead of decades) may be sufficient to uncover the 
longitudinal relationships between health behaviors and health outcomes. Many devices and 
technologies exist to provide the objective sensed data and frequent self-reports. Applications 
range from body-worn devices which can record numerous aspects of health and wellbeing to 
fully featured in-home sensor platforms or networks which require no feedback or input from the 
user and can be used to monitor activities and behavior by location. In consideration of applying 
these techniques, important attention needs to be directed toward the specific health 
parameters to be monitored, as well as user interfaces and usability, participant adherence, 
data security, handling, storage and data analysis. At this point in the evolution of clinical 
research technology it seems prudent for the HRS and similar studies to begin to adopt these 
methods as part of regular assessment strategies to gain new insights and advance research 
that will greatly benefit older adults in the future.  
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Table 1: Overview of the various devices that can be used to continuously track behavior and the relevant behaviors they can assess.  

 
Physiologic/Physical Function Cognitive/Intellectual Function Social Behaviors and Function 

 

Weight Heart 
Rate Steps Pain Falls Walking 

Speed 
Medication 
Adherence 

Mouse and 
Keyboard 

Use 
Sleep 

Time 
Out of 
Home 

Phone 
Use 

Application 
and Internet 

Use 

Body-worn 
Device  x x  x x   x x   

Smart Scale x x           

Infrared 
Sensor 
System 

     x   x x   

WiFi Sensor 
System  x       x    

Smart Pill 
Box       x      

Momentary 
Assessments    x x   x     

Smart Phone 
Application   x   x   x x x  

Computer 
Software        x    x 



20 
 

V. REFERENCES 
[1] K. M. Langa, B. L. Plassman, R. B. Wallace, A. R. Herzog, S. G. Heeringa, M. B. Ofstedal, et 

al., "The Aging, Demographics, and Memory Study: study design and methods," 
Neuroepidemiology, vol. 25, pp. 181-191, 2005. 

[2] J. M. Guralnik, E. M. Simonsick, L. Ferrucci, R. J. Glynn, L. F. Berkman, D. G. Blazer, et al., 
"A short physical performance battery assessing lower extremity function: association 
with self-reported disability and prediction of mortality and nursing home admission," J 
Gerontol, vol. 49, pp. M85-94, Mar 1994. 

[3] S. Z. Kalula, M. Ferreira, G. H. Swingler, and M. Badri, "Risk factors for falls in older adults in 
a South African Urban Community," BMC Geriatr, vol. 16, p. 51, 2016. 

[4] A. W. Frank-Wilson, J. P. Farthing, P. D. Chilibeck, C. M. Arnold, K. S. Davison, W. P. 
Olszynski, et al., "Lower leg muscle density is independently associated with fall status 
in community-dwelling older adults," Osteoporos Int, Feb 15 2016. 

[5] L. G. Johnson, M. L. Butson, R. C. Polman, I. S. Raj, E. Borkoles, D. Scott, et al., "Light 
physical activity is positively associated with cognitive performance in older community 
dwelling adults," J Sci Med Sport, Feb 17 2016. 

[6] C. H. Hillman, K. I. Erickson, and A. F. Kramer, "Be smart, exercise your heart: exercise 
effects on brain and cognition," Nat Rev Neurosci, vol. 9, pp. 58-65, 01//print 2008. 

[7] W. D. Brenowitz, R. A. Hubbard, P. K. Crane, S. L. Gray, O. Zaslavsky, and E. B. Larson, 
"Longitudinal associations between self-rated health and performance-based physical 
function in a population-based cohort of older adults," PLoS One, vol. 9, p. e111761, 
2014. 

[8] M. L. Stefanick, R. L. Brunner, X. Leng, M. C. Limacher, C. E. Bird, D. O. Garcia, et al., "The 
Relationship of Cardiovascular Disease to Physical Functioning in Women Surviving to 
Age 80 and Above in the Women's Health Initiative," J Gerontol A Biol Sci Med Sci, vol. 
71 Suppl 1, pp. S42-53, Mar 2016. 

[9] D. H. Paterson and D. E. Warburton, "Physical activity and functional limitations in older 
adults: a systematic review related to Canada's Physical Activity Guidelines," 
International Journal of Behavioral Nutrition and Physical Activity, vol. 7, pp. 1-22, 2010. 

[10] D. Podsiadlo and S. Richardson, "The Timed “Up & Go”: A Test of Basic Functional 
Mobility for Frail Elderly Persons," Journal of the American Geriatrics Society, vol. 39, 
pp. 142-148, 1991. 

[11] T. M. Steffen, T. A. Hacker, and L. Mollinger, "Age- and Gender-Related Test 
Performance in Community-Dwelling Elderly People: Six-Minute Walk Test, Berg 
Balance Scale, Timed Up & Go Test, and Gait Speeds," Physical Therapy, vol. 82, pp. 
128-137, 2002. 

[12] K. M. Ross and R. R. Wing, "Concordance of in-home “smart” scale measurement with 
body weight measured in-person," Obesity Science & Practice, pp. n/a-n/a, 2016. 

[13] J. A. Linde, R. W. Jeffery, S. A. French, N. P. Pronk, and R. G. Boyle, "Self-weighing in 
weight gain prevention and weight loss trials," Annals of Behavioral Medicine, vol. 30, 
pp. 210-216, 2005. 

[14] J. Nauman, I. Janszky, L. J. Vatten, and U. Wisloff, "Temporal changes in resting heart 
rate and deaths from ischemic heart disease," Jama, vol. 306, pp. 2579-87, Dec 21 
2011. 

[15] J. Parak, A. Tarniceriu, P. Renevey, M. Bertschi, R. Delgado-Gonzalo, and I. Korhonen, 
"Evaluation of the beat-to-beat detection accuracy of PulseOn wearable optical heart 
rate monitor," in Engineering in Medicine and Biology Society (EMBC), 2015 37th Annual 
International Conference of the IEEE, 2015, pp. 8099-8102. 



21 
 

[16] F. Adib, H. Mao, Z. Kabelac, D. Katabi, and R. C. Miller, "Smart Homes that Monitor 
Breathing and Heart Rate," presented at the Proceedings of the 33rd Annual ACM 
Conference on Human Factors in Computing Systems, Seoul, Republic of Korea, 2015. 

[17] A. Middleton, S. L. Fritz, and M. Lusardi, "Walking speed: the functional vital sign," J 
Aging Phys Act, vol. 23, pp. 314-22, Apr 2015. 

[18] T. L. Hayes, F. Abendroth, A. Adami, M. Pavel, T. A. Zitzelberger, and J. A. Kaye, 
"Unobtrusive assessment of activity patterns associated with mild cognitive impairment," 
Alzheimer's & Dementia, vol. 4, pp. 395-405, 2008. 

[19] T. L. Hayes, S. Hagler, D. Austin, J. Kaye, and M. Pavel, "Unobtrusive assessment of 
walking speed in the home using inexpensive PIR sensors," in 31st Annual International 
Conference of the IEEE Engineering in Medicine and Biology Society, Minneapolis, MN, 
2009. 

[20] J. Kaye, N. Mattek, H. Dodge, T. Buracchio, D. Austin, S. Hagler, et al., "One walk a year 
to 1000 within a year: Continuous in-home unobtrusive gait assessment of older adults," 
Gait & Posture, vol. 35, pp. 197-202, 2// 2012. 

[21] B. H. Dobkin, X. Xu, M. Batalin, S. Thomas, and W. Kaiser, "Reliability and Validity of 
Bilateral Ankle Accelerometer Algorithms for Activity Recognition and Walking Speed 
After Stroke," Stroke, vol. 42, pp. 2246-2250, August 1, 2011 2011. 

[22] B. Fasel, F. Dadashi, and K. Aminian, "Instantaneous walking speed estimation for daily 
life activity monitoring based on wrist acceleration," in 4th International Conference on 
Ambulatory Monitoring of Physical Activity and Movement (ICAMPAM), 2015. 

[23] J. Hou, Y. Sun, S. Yao, Z. Huang, and J. Wu, "Speed Estimation of Walking and Running 
Using a Wearable Accelerometer Device," Frontiers in Sensors, vol. 3, pp. 14-22, 2015. 

[24] K. Motoi, S. Tanaka, M. Nogawa, and K. Yamakoshi, "Evaluation of a new sensor system 
for ambulatory monitoring of human posture and walking speed using accelerometers 
and gyroscope," in SICE 2003 Annual Conference, 2003, pp. 1232-1235. 

[25] N. Shoval, H.-W. Wahl, G. Auslander, M. Isaacson, F. Oswald, T. Edry, et al., "Use of the 
global positioning system to measure the out-of-home mobility of older adults with 
differing cognitive functioning," Ageing & Society, vol. 31, pp. 849-869, 2011. 

[26] S. Hagler, D. Austin, T. Hayes, J. Kaye, and M. Pavel, "Unobtrusive and Ubiquitous In-
Home Monitoring: A Methodology for Continuous Assessment of Gait Velocity in Elders," 
IEEE Trans Biomed Eng, vol. 57, pp. 813-20, Nov 20 2009. 

[27] D. Austin, R. M. Cross, T. Hayes, and J. Kaye, "Regularity and predictability of human 
mobility in personal space," PLoS One, vol. 9, p. e90256, 2014. 

[28] J. Petersen, D. Austin, N. Mattek, and J. Kaye, "Time out-of-home and cognitive, physical, 
and emotional wellbeing of older adults: A longitudinal mixed effects model," PLoS ONE, 
vol. 10, p. e0139643, 2015. 

[29] P. E. Cuddihy, T. Yardibi, Z. J. Legenzoff, L. Liu, C. E. Phillips, C. Abbott, et al., "Radar 
walking speed measurements of seniors in their apartments: Technology for fall 
prevention," in Engineering in Medicine and Biology Society (EMBC), 2012 Annual 
International Conference of the IEEE, 2012, pp. 260-263. 

[30] F. Wang, M. Skubic, M. Rantz, and P. E. Cuddihy, "Quantitative Gait Measurement With 
Pulse-Doppler Radar for Passive In-Home Gait Assessment," IEEE transactions on bio-
medical engineering, vol. 61, pp. 2434-2443, 04/23 2014. 

[31] E. E. Stone and M. Skubic, "Unobtrusive, Continuous, In-Home Gait Measurement Using 
the Microsoft Kinect," IEEE Transactions on Biomedical Engineering, vol. 60, pp. 2925-
2932, 2013. 

[32] A. Smith. (2014). Older adults and technology use. . Available: 
http://www.pewinternet.org/2014/04/03/older-adults-and-technology-use/ 



22 
 

[33] C. M. Morin, D. Gibson, and J. Wade, "Self-reported sleep and mood disturbance in 
chronic pain patients," Clin J Pain, vol. 14, pp. 311-4, Dec 1998. 

[34] B. D. Dick and S. Rashiq, "Disruption of attention and working memory traces in 
individuals with chronic pain," Anesth Analg, vol. 104, pp. 1223-9, tables of contents, 
May 2007. 

[35] T. E. Rudy, D. K. Weiner, S. J. Lieber, J. Slaboda, and J. R. Boston, "The impact of 
chronic low back pain on older adults: a comparative study of patients and controls," 
Pain, vol. 131, pp. 293-301, Oct 2007. 

[36] S. Bruehl, O. Y. Chung, J. N. Jirjis, and S. Biridepalli, "Prevalence of clinical hypertension 
in patients with chronic pain compared to nonpain general medical patients," Clin J Pain, 
vol. 21, pp. 147-53, Mar-Apr 2005. 

[37] P. G. Fine, "Long-term consequences of chronic pain: mounting evidence for pain as a 
neurological disease and parallels with other chronic disease states," Pain Med, vol. 12, 
pp. 996-1004, Jul 2011. 

[38] M. J. Hjermstad, P. M. Fayers, D. F. Haugen, A. Caraceni, G. W. Hanks, J. H. Loge, et al., 
"Studies Comparing Numerical Rating Scales, Verbal Rating Scales, and Visual 
Analogue Scales for Assessment of Pain Intensity in Adults: A Systematic Literature 
Review," Journal of Pain and Symptom Management, vol. 41, pp. 1073-1093, 6// 2011. 

[39] M. Jensen, "Validity of self-report and observation measures," Progress in Pain Research 
and Management, vol. 8, pp. 637-662, 1997. 

[40] R. D. Kerns, J. Haythornthwaite, R. Rosenberg, S. Southwick, E. L. Giller, and M. C. 
Jacob, "The pain behavior check list (PBCL): Factor structure and psychometric 
properties," Journal of Behavioral Medicine, vol. 14, pp. 155-167, 1980. 

[41] S. McCahon, J. Strong, R. Sharry, and T. Cramond, "Self-report and pain behavior among 
patients with chronic pain," Clinical Journal of Pain, vol. 21, pp. 223-231, 2005. 

[42] P. Solomon, "The Clinical Utility of Pain Behavior Measures," vol. 12, p. 19, 2000-09-01 
2000. 

[43] D. C. Turk, J. T. Wack, and R. D. Kerns, "An empirical examination of the “pain-behavior” 
construct," Journal of Behavioral Medicine, vol. 8, pp. 119-130, 1985. 

[44] F. J. Keefe and A. R. Block, "Development of an observation method for assessing pain 
behavior in chronic low back pain patients," Behavior Therapy, vol. 13, pp. 363-375, 
1982/09/01 1982. 

[45] E. Eich, J. L. Reeves, B. Jaeger, and S. B. Graff-Radford, "Memory for pain: Relation 
between past and present pain intensity," Pain, vol. 23, pp. 375-380, 12// 1985. 

[46] J. A. Kaye, S. A. Maxwell, N. Mattek, T. L. Hayes, H. Dodge, M. Pavel, et al., "Intelligent 
Systems For Assessing Aging Changes: home-based, unobtrusive, and continuous 
assessment of aging," J Gerontol B Psychol Sci Soc Sci, vol. 66 Suppl 1, pp. i180-90, 
Jul 2010. 

[47] M. P. Couper, A. Kapteyn, M. Schonlau, and J. Winter, "Noncoverage and nonresponse in 
an Internet survey," Social Science Research, vol. 36, pp. 131-148, 2007. 

[48] S. M. Bradley, "Falls in Older Adults," Mount Sinai Journal of Medicine: A Journal of 
Translational and Personalized Medicine, vol. 78, pp. 590-595, 2011. 

[49] T. J. Buracchio, N. C. Mattek, H. H. Dodge, T. L. Hayes, M. Pavel, D. B. Howieson, et al., 
"Executive function predicts risk of falls in older adults without balance impairment," 
BMC Geriatr, vol. 11, p. 74, 2011. 

[50] L. A. Lipsitz, A. E. Tchalla, I. Iloputaife, M. Gagnon, K. Dole, Z. Z. Su, et al., "Evaluation of 
an Automated Falls Detection Device in Nursing Home Residents," Journal of the 
American Geriatrics Society, vol. 64, pp. 365-368, 2016. 



23 
 

[51] J. W. Rowe and R. L. Kahn, "Successful aging," The gerontologist, vol. 37, pp. 433-440, 
1997. 

[52] C. A. Depp and D. V. Jeste, "Definitions and predictors of successful aging: a 
comprehensive review of larger quantitative studies," The American Journal of Geriatric 
Psychiatry, vol. 14, pp. 6-20, 2006. 

[53] A. J. Fiocco and K. Yaffe, "Defining successful aging: The importance of including 
cognitive function over time," Archives of Neurology, vol. 67, pp. 876-880, 2010. 

[54] S. McPherson and G. Schoephoester, "Screening for dementia in a primary care 
practice," Minn Med, vol. 95, pp. 36-40, 2012. 

[55] J. S. Brach, S. A. Studenski, S. Perera, J. M. VanSwearingen, and A. B. Newman, "Gait 
variability and the risk of incident mobility disability in community-dwelling older adults," J 
Gerontol A Biol Sci Med Sci, vol. 62, pp. 983-8, Sep 2007. 

[56] J. M. Guralnik, L. Ferrucci, E. M. Simonsick, M. E. Salive, and R. B. Wallace, "Lower-
extremity function in persons over the age of 70 years as a predictor of subsequent 
disability," N Engl J Med, vol. 332, pp. 556-61, Apr 2 1995. 

[57] J. K. Petrella and M. E. Cress, "Daily ambulation activity and task performance in 
community-dwelling older adults aged 63-71 years with preclinical disability," J Gerontol 
A Biol Sci Med Sci, vol. 59, pp. 264-7, Apr 2004. 

[58] R. Camicioli, D. Howieson, B. Oken, G. Sexton, and J. Kaye, "Motor slowing precedes 
cognitive impairment in the oldest old," Neurology, vol. 50, pp. 1496-8, May 1998. 

[59] J. Verghese, R. B. Lipton, C. B. Hall, G. Kuslansky, M. J. Katz, and H. Buschke, 
"Abnormality of gait as a predictor of non-Alzheimer's dementia," N Engl J Med, vol. 347, 
pp. 1761-8, Nov 28 2002. 

[60] L. H. Eggermont, B. E. Gavett, K. M. Volkers, C. G. Blankevoort, E. J. Scherder, A. L. 
Jefferson, et al., "Lower-extremity function in cognitively healthy aging, mild cognitive 
impairment, and Alzheimer's disease," Arch Phys Med Rehabil, vol. 91, pp. 584-8, Apr. 

[61] H. H. Dodge, N. C. Mattek, D. Austin, T. L. Hayes, and J. A. Kaye, "In-home walking 
speeds and variability trajectories associated with mild cognitive impairment," Neurology, 
vol. 78, pp. 1946-52, Jun 12 2012. 

[62] R. Kaspar, F. Oswald, H.-W. Wahl, E. Voss, and M. Wettstein, "Daily Mood and Out-of-
Home Mobility in Older Adults: Does Cognitive Impairment Matter?," Journal of Applied 
Gerontology, November 28, 2012 2012. 

[63] R. Holtzer, J. Verghese, X. Xue, and R. B. Lipton, "Cognitive processes related to gait 
velocity: results from the Einstein Aging Study," Neuropsychology, vol. 20, p. 215, 2006. 

[64] D. W. Kaufman, J. P. Kelly, L. Rosenberg, T. E. Anderson, and A. A. Mitchell, "Recent 
patterns of medication use in the ambulatory adult population of the United States: the 
Slone survey," Jama, vol. 287, pp. 337-344, 2002. 

[65] S. Arlt, R. Lindner, A. Rosler, and W. von Renteln-Kruse, "Adherence to medication in 
patients with dementia: predictors and strategies for improvement," Drugs Aging, vol. 25, 
pp. 1033-47, 2008. 

[66] K. Insel, D. Morrow, B. Brewer, and A. Figueredo, "Executive function, working memory, 
and medication adherence among older adults," The Journals of Gerontology Series B: 
Psychological Sciences and Social Sciences, vol. 61, pp. P102-P107, 2006. 

[67] M. C. Garber, D. P. Nau, S. R. Erickson, J. E. Aikens, and J. B. Lawrence, "The 
concordance of self-report with other measures of medication adherence: a summary of 
the literature," Medical care, vol. 42, pp. 649-652, 2004. 

[68] T. L. Hayes, N. Larimer, A. Adami, and J. A. Kaye, "Medication adherence in healthy 
elders: small cognitive changes make a big difference," Journal of aging and health, 
2009. 



24 
 

[69] T. L. Hayes, N. Larimer, A. Adami, and J. A. Kaye, "Medication adherence in healthy 
elders: small cognitive changes make a big difference," J Aging Health, vol. 21, pp. 567-
80, Jun 2009. 

[70] K. Zickuhr and M. Madden, "Older adults and internet use," Pew Internet & American Life 
Project, vol. 6, 2012. 

[71] K. Wild, D. Howieson, F. Webbe, A. Seelye, and J. Kaye, "Status of computerized 
cognitive testing in aging: a systematic review," Alzheimer's & Dementia, vol. 4, pp. 428-
437, 2008. 

[72] E. Woo, "Computerized neuropsychological assessments," CNS spectrums, vol. 13, pp. 
14-17, 2008. 

[73] S. Zygouris and M. Tsolaki, "Computerized cognitive testing for older adults a review," 
American journal of Alzheimer's disease and other dementias, p. 1533317514522852, 
2014. 

[74] J. Kaye, N. Mattek, H. H. Dodge, I. Campbell, T. Hayes, D. Austin, et al., "Unobtrusive 
measurement of daily computer use to detect mild cognitive impairment," Alzheimer's & 
Dementia, vol. 10, pp. 10-17, 2014. 

[75] K. V. Wild, N. C. Mattek, S. A. Maxwell, H. H. Dodge, H. B. Jimison, and J. A. Kaye, 
"Computer-related self-efficacy and anxiety in older adults with and without mild 
cognitive impairment," Alzheimer's & Dementia, vol. 8, pp. 544-552, 2012. 

[76] H. B. Jimison, M. Pavel, K. Wild, P. Bissell, J. McKanna, D. Blaker, et al., "A neural 
informatics approach to cognitive assessment and monitoring," in Neural Engineering, 
2007. CNE'07. 3rd International IEEE/EMBS Conference on, 2007, pp. 696-699. 

[77] A. Seelye, N. Mattek, D. Howieson, D. Austin, K. Wild, H. Dodge, et al., "Embedded online 
questionnaire measures are sensitive to identifying mild cognitive impairment," 
Alzheimer Dis Assoc Disord, 2015. 

[78] H. H. Dodge, J. Zhu, N. Mattek, M. Bowman, O. Ybarra, K. Wild, et al., "Web-enabled 
Conversational Interactions as a Means to Improve Cognitive Functions: Results of a 6-
Week Randomized Controlled Trial," Alzheimers Dement (N Y), vol. 1, pp. 1-12, May 
2015. 

[79] A. Seelye, S. Hagler, N. Mattek, D. B. Howieson, K. Wild, H. H. Dodge, et al., "Computer 
mouse movement patterns: A potential marker of mild cognitive impairment," Alzheimer's 
& Dementia: Diagnosis, Assessment & Disease Monitoring, vol. 1, pp. 472-480, 2015. 

[80] H. Jimison, N. Jessey, J. McKanna, T. Zitzelberger, and J. Kaye, "Monitoring Computer 
Interactions to Detect Early Cognitive Impairment in Elders," in Distributed Diagnosis and 
Home Healthcare, 2006. D2H2. 1st Transdisciplinary Conference on, 2006, pp. 75-78. 

[81] D. Austin, H. Jimison, T. Hayes, N. Mattek, J. Kaye, and M. Pavel, "Measuring motor 
speed through typing: a surrogate for the finger tapping test," Behavior research 
methods, vol. 43, pp. 903-909, 2011. 

[82] B. L. Myers and P. Badia, "Changes in circadian rhythms and sleep quality with aging: 
mechanisms and interventions," Neuroscience & Biobehavioral Reviews, vol. 19, pp. 
553-571, 1996. 

[83] A. Seelye, N. Mattek, D. Howieson, T. Riley, K. Wild, and J. Kaye, "The impact of sleep on 
neuropsychological performance in cognitively intact older adults using a novel in-home 
sensor-based sleep assessment approach," The Clinical neuropsychologist, vol. 29, pp. 
53-66, 2015. 

[84] T. L. Hayes, T. Riley, N. Mattek, M. Pavel, and J. A. Kaye, "Sleep habits in mild cognitive 
impairment," Alzheimer disease and associated disorders, vol. 28, p. 145, 2014. 

[85] S. Ancoli-Israel, "Sleep and its disorders in aging populations," Sleep medicine, vol. 10, 
pp. S7-S11, 2009. 



25 
 

[86] Y. Huang, R. Potter, W. Sigurdson, A. Santacruz, S. Shih, Y.-E. Ju, et al., "Effects of age 
and amyloid deposition on Aβ dynamics in the human central nervous system," Archives 
of neurology, vol. 69, pp. 51-58, 2012. 

[87] M. Hirshkowitz, C. A. Moore, C. R. Hamilton III, K. C. Rando, and I. Karacan, 
"Polysomnography of adults and elderly: sleep architecture, respiration, and leg 
movement," Journal of Clinical Neurophysiology, vol. 9, pp. 56-62, 1992. 

[88] A. Wittkowski, H. L. Richards, C. E. Griffiths, and C. J. Main, "Illness perception in 
individuals with atopic dermatitis," Psychol Health Med, vol. 12, pp. 433-44, Aug 2007. 

[89] K. L. Hon, M. C. Lam, T. F. Leung, C. M. Chow, E. Wong, and A. K. Leung, "Assessing 
itch in children with atopic dermatitis treated with tacrolimus: objective versus subjective 
assessment," Adv Ther, vol. 24, pp. 23-8, Jan-Feb 2007. 

[90] K. L. Hon, M. C. Lam, T. F. Leung, W. Y. Kam, K. C. Lee, M. C. Li, et al., "Nocturnal wrist 
movements are correlated with objective clinical scores and plasma chemokine levels in 
children with atopic dermatitis," Br J Dermatol, vol. 154, pp. 629-35, Apr 2006. 

[91] B. G. Bender, R. Ballard, B. Canono, J. R. Murphy, and D. Y. Leung, "Disease severity, 
scratching, and sleep quality in patients with atopic dermatitis," J Am Acad Dermatol, vol. 
58, pp. 415-20, Mar 2008. 

[92] B. G. Bender, S. B. Leung, and D. Y. Leung, "Actigraphy assessment of sleep disturbance 
in patients with atopic dermatitis: an objective life quality measure," J Allergy Clin 
Immunol, vol. 111, pp. 598-602, Mar 2003. 

[93] K. V. Wild, N. Mattek, D. Austin, and J. A. Kaye, "“Are You Sure?” Lapses in Self-
Reported Activities Among Healthy Older Adults Reporting Online," Journal of Applied 
Gerontology, p. 0733464815570667, 2015. 

[94] C. A. Kushida, A. Chang, C. Gadkary, C. Guilleminault, O. Carrillo, and W. C. Dement, 
"Comparison of actigraphic, polysomnographic, and subjective assessment of sleep 
parameters in sleep-disordered patients," Sleep medicine, vol. 2, pp. 389-396, 2001. 

[95] A. Sadeh, "The role and validity of actigraphy in sleep medicine: an update," Sleep 
medicine reviews, vol. 15, pp. 259-267, 2011. 

[96] A. Sadeh, P. J. Hauri, D. F. Kripke, and P. Lavie, "The role of actigraphy in the evaluation 
of sleep disorders," Sleep, vol. 18, pp. 288-302, 1995. 

[97] C. P. Pollak, W. W. Tryon, H. Nagaraja, and R. Dzwonczyk, "How accurately does wrist 
actigraphy identify the states of sleep and wakefulness?," SLEEP-NEW YORK-, vol. 24, 
pp. 957-965, 2001. 

[98] K. Watanabe, T. Watanabe, H. Watanabe, H. Ando, T. Ishikawa, and K. Kobayashi, 
"Noninvasive measurement of heartbeat, respiration, snoring and body movements of a 
subject in bed via a pneumatic method," Biomedical Engineering, IEEE Transactions on, 
vol. 52, pp. 2100-2107, 2005. 

[99] J. M. Kelly, R. E. Strecker, and M. T. Bianchi, "Recent developments in home sleep-
monitoring devices," ISRN neurology, vol. 2012, 2012. 

[100] A. M. Adami, M. Pavel, T. L. Hayes, and C. M. Singer, "Detection of movement in bed 
using unobtrusive load cell sensors," Information Technology in Biomedicine, IEEE 
Transactions on, vol. 14, pp. 481-490, 2010. 

[101] A. M. Adami, A. G. Adami, T. Hayes, and Z. Beattie, "Unobtrusive Movement Detection 
during Sleep based on Load Cell Dynamics." 

[102] D. Austin, Z. T. Beattie, T. Riley, A. M. Adami, C. C. Hagen, and T. L. Hayes, "Unobtrusive 
classification of sleep and wakefulness using load cells under the bed," Conf Proc IEEE 
Eng Med Biol Soc, vol. 2012, pp. 5254-7, 2012. 



26 
 

[103] T. L. Hayes, T. Riley, M. Pavel, and J. A. Kaye, "Estimation of rest-activity patterns using 
motion sensors," in Engineering in Medicine and Biology Society (EMBC), 2010 Annual 
International Conference of the IEEE, 2010, pp. 2147-2150. 

[104] M. Skubic, R. D. Guevara, and M. Rantz, "Automated Health Alerts Using In-Home 
Sensor Data for Embedded Health Assessment," Translational Engineering in Health 
and Medicine, IEEE Journal of, vol. 3, pp. 1-11, 2015. 

[105] M. J. Rantz, M. Skubic, R. J. Koopman, L. Phillips, G. L. Alexander, S. J. Miller, et al., 
"Using sensor networks to detect urinary tract infections in older adults," in e-Health 
Networking Applications and Services (Healthcom), 2011 13th IEEE International 
Conference on, 2011, pp. 142-149. 

[106] E. Y. Cornwell and L. J. Waite, "Social disconnectedness, perceived isolation, and health 
among older adults," J Health Soc Behav, vol. 50, pp. 31-48, Mar 2009. 

[107] J. S. House, K. R. Landis, and D. Umberson, "Social relationships and health," Science, 
vol. 241, pp. 540-5, Jul 29 1988. 

[108] J. Holt-Lunstad, T. B. Smith, and J. B. Layton, "Social relationships and mortality risk: a 
meta-analytic review," PLoS Med, vol. 7, p. e1000316, Jul 2010. 

[109] T. A. Glass, C. M. de Leon, R. A. Marottoli, and L. F. Berkman, "Population based study of 
social and productive activities as predictors of survival among elderly Americans," Bmj, 
vol. 319, pp. 478-83, Aug 21 1999. 

[110] S. S. Bassuk, T. A. Glass, and L. F. Berkman, "Social disengagement and incident 
cognitive decline in community-dwelling elderly persons," Ann Intern Med, vol. 131, pp. 
165-73, Aug 3 1999. 

[111] L. Fratiglioni, S. Paillard-Borg, and B. Winblad, "An active and socially integrated lifestyle 
in late life might protect against dementia," Lancet Neurol, vol. 3, pp. 343-53, Jun 2004. 

[112] R. E. Holtzman, G. W. Rebok, J. S. Saczynski, A. C. Kouzis, K. Wilcox Doyle, and W. W. 
Eaton, "Social network characteristics and cognition in middle-aged and older adults," J 
Gerontol B Psychol Sci Soc Sci, vol. 59, pp. P278-84, Nov 2004. 

[113] R. L. Piferi and K. A. Lawler, "Social support and ambulatory blood pressure: an 
examination of both receiving and giving," Int J Psychophysiol, vol. 62, pp. 328-36, Nov 
2006. 

[114] A. S. Buchman, P. A. Boyle, R. S. Wilson, B. D. James, S. E. Leurgans, S. E. Arnold, et 
al., "Loneliness and the rate of motor decline in old age: the Rush Memory and Aging 
Project, a community-based cohort study," BMC Geriatr, vol. 10, pp. 77-84, 2010. 

[115] K. Avlund, R. Lund, B. E. Holstein, and P. Due, "Social relations as determinant of onset 
of disability in aging," Arch Gerontol Geriatr, vol. 38, pp. 85-99, Jan-Feb 2004. 

[116] N. A. Christakis and J. H. Fowler, "The Collective Dynamics of Smoking in a Large Social 
Network," New England Journal of Medicine, vol. 358, pp. 2249-2258, 2008. 

[117] J. H. Fowler and N. A. Christakis, "Dynamic spread of happiness in a large social network: 
longitudinal analysis over 20 years in the Framingham Heart Study," Bmj, vol. 337, 2008. 

[118] L. F. Berkman, T. Glass, I. Brissette, and T. E. Seeman, "From social integration to health: 
Durkheim in the new millennium," Soc Sci Med, vol. 51, pp. 843-57, Sep 2000. 

[119] D. Mellor, M. Stokes, L. Firth, Y. Hayashi, and R. Cummins, "Need for belonging, 
relationship satisfaction, loneliness, and life satisfaction," Personality and Individual 
Differences, vol. 45, pp. 213-218, 2008. 

[120] J. T. Cacioppo, J. H. Fowler, and N. A. Christakis, "Alone in the crowd: the structure and 
spread of loneliness in a large social network," Journal of personality and social 
psychology, vol. 97, p. 977, 2009. 

[121] N. A. Christakis and J. H. Fowler, "The Spread of Obesity in a Large Social Network over 
32 Years," New England Journal of Medicine, vol. 357, pp. 370-379, 2007. 



27 
 

[122] J. Petersen, J. Kaye, P. G. Jacobs, A. Quinones, H. Dodge, A. Arnold, et al., "Longitudinal 
Relationship Between Loneliness and Social Isolation in Older Adults: Results From the 
Cardiovascular Health Study," Journal of Aging and Health, October 21, 2015 2015. 

[123] B. Cornwell and E. O. Laumann, "The health benefits of network growth: new evidence 
from a national survey of older adults," Soc Sci Med, vol. 125, pp. 94-106, Jan 2015. 

[124] J. R. Cerhan and R. B. Wallace, "Change in social ties and subsequent mortality in rural 
elders," Epidemiology, vol. 8, pp. 475-81, Sep 1997. 

[125] R. S. Wilson, K. R. Krueger, S. E. Arnold, J. A. Schneider, J. F. Kelly, L. L. Barnes, et al., 
"Loneliness and risk of Alzheimer disease," Arch Gen Psychiatry, vol. 64, pp. 234-40, 
Feb 2007. 

[126] L. L. Barnes, C. F. Mendes de Leon, R. S. Wilson, J. L. Bienias, and D. A. Evans, "Social 
resources and cognitive decline in a population of older African Americans and whites," 
Neurology, vol. 63, pp. 2322-6, Dec 28 2004. 

[127] J. T. Cacioppo, L. C. Hawkley, G. G. Berntson, J. M. Ernst, A. C. Gibbs, R. Stickgold, et 
al., "Do lonely days invade the nights? Potential social modulation of sleep efficiency," 
Psychol Sci, vol. 13, pp. 384-7, Jul 2002. 

[128] E. M. Friedman, M. S. Hayney, G. D. Love, H. L. Urry, M. A. Rosenkranz, R. J. Davidson, 
et al., "Social relationships, sleep quality, and interleukin-6 in aging women," 
Proceedings of the National Academy of Sciences of the United States of America, vol. 
102, pp. 18757-18762, 2005. 

[129] D. Russell, L. A. Peplau, and C. E. Cutrona, "The revised UCLA Loneliness Scale: 
concurrent and discriminant validity evidence," J Pers Soc Psychol, vol. 39, pp. 472-80, 
Sep 1980. 

[130] T. A. Salthouse, "Mental Exercise and Mental Aging," Perspectives on Psychological 
Science, vol. 1, pp. 68-87, March 1, 2006 2006. 

[131] A. R. Herzog, M. M. Franks, H. R. Markus, and D. Holmberg, "Activities and well-being in 
older age: effects of self-concept and educational attainment," Psychol Aging, vol. 13, 
pp. 179-85, Jun 1998. 

[132] A. A. Bielak, "How can we not 'lose it' if we still don't understand how to 'use it'? 
Unanswered questions about the influence of activity participation on cognitive 
performance in older age--a mini-review," Gerontology, vol. 56, pp. 507-19, 2009. 

[133] J. Liang, "Self-reported physical health among aged adults," J Gerontol, vol. 41, pp. 248-
60, Mar 1986. 

[134] J. Petersen, D. Austin, J. Kaye, M. Pavel, and T. Hayes, "Unobtrusive in-home detection 
of time spent out-of-home with applications to loneliness and physical activity," IEEE 
Journal of Biomedical and Health Informatics, vol. 18, pp. 1590-1596, 2014. 

[135] M. Wettstein, H.-W. Wahl, N. Shoval, F. Oswald, E. Voss, U. Seidl, et al., "Out-of-Home 
Behavior and Cognitive Impairment in Older Adults: Findings of the SenTra Project," 
Journal of Applied Gerontology, September 24, 2012 2012. 

[136] J. A. Leech, W. C. Nelson, R. T. Burnett, S. Aaron, and M. E. Raizenne, "It's about time: a 
comparison of Canadian and American time-activity patterns," J Expo Anal Environ 
Epidemiol, vol. 12, pp. 427-32, Nov 2002. 

[137] M. Crowe, R. Andel, V. G. Wadley, O. C. Okonkwo, P. Sawyer, and R. M. Allman, "Life-
space and cognitive decline in a community-based sample of African American and 
Caucasian older adults," J Gerontol A Biol Sci Med Sci, vol. 63, pp. 1241-5, Nov 2008. 

[138] B. D. James, P. A. Boyle, A. S. Buchman, L. L. Barnes, and D. A. Bennett, "Life space 
and risk of Alzheimer disease, mild cognitive impairment, and cognitive decline in old 
age," Am J Geriatr Psychiatry, vol. 19, pp. 961-9, Nov 2011. 



28 
 

[139] B. T. Stalvey, C. Owsley, M. E. Sloane, and K. Ball, "The Life Space Questionnaire: A 
Measure of the Extent of Mobility of Older Adults," Journal of Applied Gerontology, vol. 
18, pp. 460-478, December 1, 1999 1999. 

[140] L. Boise, K. Wild, N. Mattek, M. Ruhl, H. H. Dodge, and J. Kaye, "Willingness of older 
adults to share data and privacy concerns after exposure to unobtrusive in-home 
monitoring," Gerontechnology, vol. 11, pp. 428-435, 2013. 

[141] M. Levasseur, L. Gauvin, L. Richard, Y. Kestens, M. Daniel, and H. Payette, "Associations 
between perceived proximity to neighborhood resources, disability, and social 
participation among community-dwelling older adults: results from the VoisiNuAge 
study," Arch Phys Med Rehabil, vol. 92, pp. 1979-86, Dec 2011. 

[142] P. J. Clarke, J. Weuve, L. Barnes, D. A. Evans, and C. F. Mendes de Leon, "Cognitive 
decline and the neighborhood environment," Ann Epidemiol, vol. 25, pp. 849-54, Nov 
2015. 

[143] I. A. Lang, D. J. Llewellyn, K. M. Langa, R. B. Wallace, F. A. Huppert, and D. Melzer, 
"Neighborhood deprivation, individual socioeconomic status, and cognitive function in 
older people: analyses from the English Longitudinal Study of Ageing," J Am Geriatr 
Soc, vol. 56, pp. 191-8, Feb 2008. 

[144] N. Eagle, A. S. Pentland, and D. Lazer, "Inferring friendship network structure by using 
mobile phone data," Proc Natl Acad Sci U S A, vol. 106, pp. 15274-8, Sep 8 2009. 

[145] R. Wang, F. Chen, Z. Chen, T. Li, G. Harari, S. Tignor, et al., "Studentlife: assessing 
mental health, academic performance and behavioral trends of college students using 
smartphones," in Proceedings of the 2014 ACM International Joint Conference on 
Pervasive and Ubiquitous Computing, 2014, pp. 3-14. 

[146] J. Petersen, S. Thielke, D. Austin, and J. Kaye, "Phone behaviour and its relationship to 
loneliness in older adults," Aging & Mental Health, pp. 1-8, 2015. 

[147] J. Petersen, D. Austin, J. Yeargers, and J. Kaye, "Unobtrusive phone monitoring as a 
novel measure of cognitive function," Alzheimer's & Dementia: The Journal of the 
Alzheimer's Association, vol. 10, pp. P366-P367, 2014. 

[148] A. Seelye, S. Hagler, N. Mattek, D. B. Howieson, K. Wild, H. H. Dodge, et al., "Computer 
mouse movement patterns: A potential marker of mild cognitive impairment," Alzheimer's 
& Dementia: Diagnosis, Assessment & Disease Monitoring, 2015. 

[149] S. R. Cotten, W. A. Anderson, and B. M. McCullough, "Impact of Internet Use on 
Loneliness and Contact with Others Among Older Adults: Cross-Sectional Analysis," 
Journal of Medical Internet Research, vol. 15, p. e39, 2013. 

[150] T. Fokkema and K. Knipscheer, "Escape loneliness by going digital: a quantitative and 
qualitative evaluation of a Dutch experiment in using ECT to overcome loneliness among 
older adults," Aging Ment Health, vol. 11, pp. 496-504, Sep 2007. 

[151] R. Hagan, R. Manktelow, B. J. Taylor, and J. Mallett, "Reducing loneliness amongst older 
people: a systematic search and narrative review," Aging Ment Health, vol. 18, pp. 683-
93, 2014. 

[152] M. Choi, S. Kong, and D. Jung, "Computer and Internet Interventions for Loneliness and 
Depression in Older Adults: A Meta-Analysis," Healthcare Informatics Research, vol. 18, 
pp. 191-198, 2012. 

[153] J. P. Austin, "Development and validation of an unobtrusive, continuous model of 
loneliness among older adults," PhD, Oregon Health & Science University, Scholar 
Archive, 2015. 

[154] S. Sum, R. M. Mathews, I. Hughes, and A. Campbell, "Internet use and loneliness in older 
adults," Cyberpsychol Behav, vol. 11, pp. 208-11, Apr 2008. 



29 
 

[155] K. J. Mukamal, G. A. Wellenius, H. H. Suh, and M. A. Mittleman, "Weather and air 
pollution as triggers of severe headaches," Neurology, vol. 72, pp. 922-927, 2009. 

[156] (2016). AirData: Access to monitored air quality data from EPA's Air Quality System 
(AQS) Data Mart. Available: https://www3.epa.gov/airdata/ 

[157] J. J. A. Denissen, L. Butalid, L. Penke, and M. A. G. Van Aken, "The effects of weather on 
daily mood: a multilevel approach," Emotion, vol. 8, p. 662, 2008. 

[158] M. C. Keller, B. L. Fredrickson, O. Ybarra, S. p. CÃ´tÃ©, K. Johnson, J. Mikels, et al., "A 
warm heart and a clear head the contingent effects of weather on mood and cognition," 
Psychological Science, vol. 16, pp. 724-731, 2005. 

[159] N. C. D. C. U.S. Department of Commerce. (2013). NNDC Climate Data Online.  
[160] A. A. D. U.S. Naval Observatory. (2011, June 5, 2013). Sun or Moon Rise/Set Table for 

One Year.  

 


	I. Introduction
	II. Overview of Objective Assessment of Behavior and Function Using Pervasive Computing and Embedded Sensing
	1. Physical/Physiological Function
	Weight and body mass index
	Heart Rate
	Walking Speed and Steps
	Pain
	Falls

	2. Cognitive/Intellectual Function
	Walking Speed
	Medication Adherence
	Computer Use

	3. Social Behaviors and Function
	Time Out of Home
	Phone Use
	Computer Use


	III. Summary
	IV. Conclusion
	V. References

