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ABSTRACT 
 

 This paper develops models for prediction of disease status from longitudinal data. 

The estimation of area under curve (AUC) is illustrated on the basis of estimates of 

sensitivity and specificity for repeated binary outcomes of disease status. There are 

several research papers in this field on cross-sectional data but only a few dealt with the 

repeated observations. This paper shows the procedures to deal with repeated 

observations employing Markov models. These procedures employ covariate dependent 

Markov models for estimating sensitivity and specificity, which in turn, produce the 

estimates for area under curve. The tests for equality of areas under curve for two models 

are also suggested. An application is illustrated for depression data from the Health and 

Retirement Survey, USA. The results indicate that the transition model approach can 

reveal the matching of disease status very efficiently; an estimate of more than 0.96 was 

obtained for the AUC for a transition model based prediction of disease from the 

depression data. 
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1. INTRODUCTION 
 

 The prediction of disease status has emerged as an important area of research. The 

relationship between the underlying risk factors and the disease status at different times 

produce longitudinal data. In predicting the disease status, the longitudinal data provide 

the necessary trajectories. During the past years, many attempts have been made to 

propose models based on the potential risk factors to predict disease status as well as to 

determine the performance of such models in determining the matches between observed 

and expected outcomes. Some of the examples of prediction models include: 

homelessness within three months of discharge among inpatients with schizophrenia 

(Olfson et al., 1999), nerve function impairment in leprosy patients (Croft et al., 2003), 

pressure ulcer development (Schoonhoven et al., 2006), risk of depressive episode in 

adolescents (Van Voorbees et al., 2008), return of spontaneous circulation in intervals 

without chest compressions during out-of-hospital cardiac arrest (Gundersen et al., 2009). 
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Similarly, Marwick et al. (2001), Biagini et al. (2005), Boyko et al. (2006) and Zethelius 

et al. (2008) worked in this area of research. Most researchers in this field employed 

either the logistic regression or the proportional hazards regression models. Gundersen et 

al. (2008, 2009) used mixed effects logistic regression models. A multistate transition 

model with autoregressive logistic regression was proposed by de Vries et al. (1998); 

earlier Agresti (1997) suggested a model for repeated measurements of multivariate 

binary response. Some of the more in-depth studies were conducted using the regressive 

models. The regressive logistic regression models are based on dynamics present in the 

repeated observations that emerged from the longitudinal data. These models are based 

on the regressive logistic regression formulation of Bonney (1986, 1987). Sequences of 

transitions or situations using conditional probabilities are proposed by these models. The 

transitional models for first order (Muenz and Rubinstein, 1985) or higher orders (Islam 

and Chowdhury, 2006, 2007; Islam, Chowdhury and Huda, 2009) can also be employed 

in the prediction of disease status. In other words, it has been customary to employ the 

longitudinal data to predict the disease status but the research works on performance of 

predictions are concentrated on the diagnostics for cross-sectional data. 
 

 To assess the performance of prediction models, the diagnostic procedures based on 

the receiver operating characteristic (ROC) curves have been proposed (Delong and 

Clarke-Pearson, 1988; Pepe, 2000; Rodenberg and Zhou, 2000; Zhang et al., 2002; 

DeLong, Obuchowski, 2006; Pencina et al., 2008; Qin and Zhou, 2006; Bandos et al., 

2009). The tests for area under curve (AUC) have been suggested for both uncorrelated 

and correlated data. Steyerberg et al. (2010) compared the techniques for assessing the 

performance of prediction models for binary outcomes. Pepe et al. (2004) showed the 

limitations of the odds ratio in assessing the performance of a diagnostic, prognostic or 

screening marker. They demonstrated that merely being associated with outcome does 

not ensure a good performance, but the measure of assessing performance needs to be 

based on sensitivity and specificity. However, these tests are provided mostly for cross-

sectional data. In longitudinal analysis, the predictions need to be based on repeated 

measures data. Hence, the test procedures have to be extended for the repeated measures 

data in order to take account of the transitions in disease status between two or more time 

points. Islam and Chowdhury (2010) proposed regressive models for a sequence of 

transitions in longitudinal data. These models are employed to predict the future status of 

outcome variable of the individuals on the basis of their underlying background 

characteristics or risk factors. To measure the suitability of the proposed models for 

predicting the disease status, they have extended the ROC curve approach for repeated 

measures. 
 

 In this paper, we demonstrate a procedure for computation of area under the curve for 

a fixed time based on cross-sectional data and then it is extended to a Markov chain 

model to take account of the conditional transition probabilities with covariate 

dependence. The computation procedure illustrated in this paper displays the estimation 

of sensitivity and specificity for a first order Markov model which can be extended to a 

higher order model. The proposed models along with the estimation of AUC and the 

corresponding test procedures are illustrated employing the Health and Retirement Study 

(HRS) data on depression among elderly people in the USA. 
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2. CONSTRUCTION OF ROC CURVE: A LOGISTIC  

REGRESSION APPROACH 
 

 This section illustrates the construction of ROC curve employing sensitivity and 

specificity on the basis of logistic regression models. Let us consider i iY y as the value 

of the actual disease status ( 1iY   for diseased and 0iY   for non-diseased) of the i-th 

individual  1,2, ,i n  . The number of non-diseased and diseased individuals are 0n  

and 1n  respectively where 
1

0
k

k

n n


  . If we denote i iY y   1,2, ,i n  for the 

predicted value for the same individual ( 1Y    for diseased and 0Y    for non-

diseased), then the following table displays probabilities for the association between 

actual and predicted values at a fixed time (subsequently for convenience this will be 

called a zero-order Markov model). It may be noted here that Y can be observed value of 

the status and the predicted value can be based on diagnostic test. The table below shows 

the correspondence between the actual and predicted values: 

 

Actual Value 
Predicted Value 

1Y    0Y    

1Y   ( 1, 1)P Y Y    ( 1, 0)P Y Y    

0Y   ( 0, 1)P Y Y    ( 0, 0)P Y Y    

 

 We can define the sensitivity as 
 

  

 1, 1
( 1 1)

( 1)

i i
i i

i

P Y Y
P Y Y

P Y

 
  


 

 

and the specificity as 
 

  

 0, 0
( 0 0) .

( 0)

i i
i i

i

P Y Y
P Y Y

P Y

 
  


 

 

 Then, in the logistic regression form these are conditional models which can be 

reformulated by incorporating a covariate, X , as shown below, 
 

  

10 11

10 11

( 1 , 1)
1

i

i

x

i i i i x

e
P Y X x Y

e

 

 
   


 

 

  

00 01

00 01

( 0 , 0) .
1

i

i

x

i i i i x

e
P Y X x Y

e

 

 
   



 
 

 In the above models, the prediction of disease status is expressed as functions of a risk 

factor or covariate. These models represent hypothetically that the prediction variable Y   

can assume values 0 and 1 for predicting the disease status for given actual disease status 

0 and 1 as well as for given values of the risk factor X x . There are two models for 

actual disease status 1 or 0 indicating two different sets of parameters for these models. In 
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these models, we replaced the actual disease status by the risk factor or covariate of 

interest. In other words, the prediction models are functions of risk factors only. 
 

 The logit models can be generalized by incorporating a vector of covariates: 

 

  

000 10

011 11

0 1

10

,  ,   .

p pp

X

X
X

X

     
    
         
    
    

         

 

 

 The logistic regression models are 
 

  
1

1

( 1 , 1) ,

1

i

i

x

i i i i
x

e
P Y X x Y

e




    



           (2.1) 

 

  

0

0

( 0 , 0) ,
1

i

i

x

i i i i
x

e
P Y X x Y

e




   


           (2.2) 

 

where ix
 
is the vector of covariate values for i-th individual. We can define for 0,1k   

where k  is the value for actual disease status: 
 

  

( , ) ,  where 1, if = = , otherwise, 0. 
1

ik k i

ik k

x

i i ik ik i i i i i
x

e
P Y y X x Y k Y Y k

e

 


         


 

 

 In the above model, ikx
 
denotes the vector of covariate values for the i-th person with 

actual disease status k  and k  denotes the corresponding vector of parameters. Hence, 

the likelihood function is: 
 

  

1

1 1

0 1 0

1 . 

1 1

ik ik

ik k i ik k ik

ik k ik k

y y
x xn

k
x xk i k

e e
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   

 

 The estimates of the parameters are obtained from the following equations: 
 

  

ln
0, 0,1; 0,... .k

km

L
k m p


  


 

 

 Hence we may redefine the sensitivity as shown in (2.1) and specificity as (2.2). 

 

3. CONSTRUCTION OF ROC: A MARKOV MODEL APPROACH 
 

 The ROC curve can be drawn by plotting the sensitivity in the y-axis against  

(1-specificity) in the x-axis. The ROC curves have gained importance in recent days in 

epidemiology for assessing the accuracy of diagnostic tests. In order to assess a 

prediction model, the ROC curve can assess how good the model is in discriminating 
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between diseased subjects (True Positives) from non-diseased subjects (True Negatives). 

In other words, the ROC curve reveals the discriminatory power of the model. 
 

 In Section 2, we have described a model for a fixed time point or a zero-order Markov 

model. In a zero-order Markov model, we compare the actual disease status with the 

predicted status based on the fitted model at a fixed time. If we consider repeated 

observations then we need to take account of the first or higher order Markov models for 

modeling the transition in disease status in subsequent times. In this section, we propose a 

model such that the outcomes of disease status in subsequent follow-ups are considered 

and the outcome in the subsequent follow-up compared with that of the prior outcome. In 

other words, the predictive value indicates whether a change in the status occurs. Any 

change would indicate a deviation from the previous state due to a transition. In other 

words, zero-order model provides the goodness of fit of the suitability of the model in 

diagnosing the disease status and first or higher order models show whether there is any 

change in the course of disease status over time and then goodness of fit is tested at the 

endpoint of the order. In other words, the transition probabilities are obtained from status 

of disease from previous time point to the current time point and the current time point is 

considered as the end point here for a first order model. 
 

 Muenz and Rubinstein (1985), Bonney (1987), Azzalini (1994), Islam and 

Chowdhury (2006, 2007, 2010), Islam et al. (2009) proposed the regressive logistic 

models under the Markov assumptions. The joint mass function can be expressed as 
 

11 2 1 2 1 3 1 2 1( , ,..., ; ) ( ; ) ( ; ) ( , ; )... ( ,..., ; )
i i ii i in i i i i i i i i i i in i in iP y y y x P y x P y y x P y y y x P y y y x


  

 

where 1( ,..., )i i ipx x x   , i=1,2,…n, is the vector of covariate values for subject i, in  is 

the number of follow-ups for subject i, and ,  1,2,...,ij iy j n , is the value of the outcome 

variable for the i-th subject at the j-th follow-up. In a first order Markov model for 

repeated observations, this can be expressed as follows: 
 

  
11 2 1 2 1 3 2( , ,..., ; ) ( ; ) ( ; ) ( ; )... ( ; ).

i i ii i in i i i i i i i i i in in iP y y y x P y x P y y x P y y x P y y x


  

 

 The first order Markov models can be expressed as 
 

  

, 1 i i 1 0 1 1 1( ;x ) (x , ),  ... ,  m=y .
1

m ij

m

y

ij i j ij m m m i mp ip ij

e
P y y y x x

e



  
       


 

 

 The logit is defined as 
 

  

1 i

1

1 i

( 1 ;x )
ln ,  m=y

( 0 ;x )

ij ij

m ij

ij ij

P y y

P y y








 


 

 

where 1( ,..., )i i ipx x x  , order of the Markov chain is 1 and number of covariates is p. 

The likelihood function can be defined as 
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1
1 1 1 1

( ; )
1

m ij
i i

m

yn nn n

ij ij i
i j i j

e
L P y y x

e



 
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 


  . 

 

 Estimates of the parameters can be obtained from the equations of first derivatives of 

log likelihood function with respect to parameters contained in m  as shown below: 
 

  

ln
0.

m

L



 

 

 The score vector for m  where 1ijm y   (0 or 1) are 

 

  

 1 1
1 1

, ,..., 0  where 0
inn

ij il i ij
i j

y x y y l
 

    
   , 

 

  

 1,. 1
1 1

, ..., 0,  where 1,2,..., .
inn

il ij il i ij
i j

y y x y y l p
 

    
  

  

 For a first order Markov model, the sensitivity is 
 

  
1 , 1

1

ˆ

, 1 ˆ
ˆ( 1 1; ) ,

1

i jy

ij i j i

e
P y y x

e






  


 

 

  1 10 11 1 1
ˆ ˆ ˆ ˆ...i p ipx x                  (3.1) 

 

and 1- specificity is: 
 

  

0 , 1

0

ˆ

, 1 ˆ
ˆ1 ( 0 0; ) 1 ,

1

i jy

ij i j i

e
P y y x

e






    


 

 

  0 00 01 1 0
ˆ ˆ ˆ ˆ... .i p ipx x                  (3.2) 

 

 The sensitivity and (1-specificity) in 3.1 and 3.2 are first order Markov model 

measures comparable to the measures shown in 2.1 and 2.2 respectively for zero order 

model. In other words, we can construct the area under curve as described in section 

below for both the zero-order and first order models for examining the goodness of fit 

using the measures of sensitivity and specificity. 

 

4. AREA UNDER THE CURVE AND TEST PROCEDURES 
 

 For both the models proposed in sections 2 and 3, following Obuchowski (2006) we 

can employ the following function and estimate the probability that a randomly selected 

positive case will receive a higher score than a randomly selected negative case as: 
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it

it

it

1     if Y

( , ) 0.5  if Y

0     if Y

js

it js js

js

Y

Y Y Y

Y

 


  




 

 

where itY = result of the diagnostic test for the ith patient with disease, 

  jsY = result of the diagnostic test for the jth patient without disease of interest. 

 

 We can employ nonparametric method to estimate the ROC area on the basis of all 

possible pairs of diseased and non-diseased persons as shown below: 
 

  

 
1 1

1ˆ ,
t sn n

it js
i jt s

Y Y
n n  

     

 

where  result of the diagnostic test for the ith patient with disease,itY   

   result of the diagnostic test for the jth patient without disease of interest.jsY   

  

 number of persons with disease in the sample,

 number of persons without disease in the sample.

t

s

n

n




 

 

 Several studies were conducted during the past 20 years (DeLong et al., 1988; Pepe, 

2000; Rodenberg and Zhou, 2000; Zhang et al., 2002; Pencina and Agostino, 2004; Qin 

and Zhou, 2006; Bandos et al., 2009). We can show following DeLong et al. (1988) and 

Obuchowski (2006) that the estimated variance of the summary measure ̂  can be 

obtained as 
 

  

  1 1ˆˆ
1 1

t s
t s

V S S
n n

  
 

 

 

where 

2 2

1 1

1 1ˆ ˆ( ) ,   ( ) ,
1 1

t tn n

t t it s s js
i it s

S V Y S V Y
n n 

      
    

 
 

 
1

1
( ) ,

sn

t it it js
js

V Y Y Y
n 

 

and  
1

1
( ) ,

tn

s js it js
it

V Y Y Y
n 

  . 

 

 We can extend this for different orders of the transitions as indicated below for a 

transition model (Islam and Chowdhury, 2010): 
 

  

 
1 1

1ˆ ,
rt rsn n

r rit rjs
i jrt rs

Y Y
n n  

     

 

where the subscript r is used to indicate the r-th order of the transition. In this case, r=1 

shows the areas under ROC curves for Markov models of first order. Using r , we can 

obtain areas under the ROC curve for the conditional models. These areas represent the 

accuracy of the model predictions as compared to the observed status after each transition 

as well as after the end of the study. 
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 For testing the equality of areas under the two ROC curves 
 

  0 1 2 1 1 2:   against :  r r r rH H       
 

we can use the following test as a generalization of the test for any order for conditional 

models: 
 

  

1 2 1 2

1 2 12 2

ˆ ˆ ˆ ˆ

ˆ ˆ ˆ ˆˆ ˆ ˆ( ) ( ) ( )

r r r r

r r rr r

z
Var Var Var

   
 

    
, where 0,1,r    

 

 It is noteworthy that for testing equality of areas under transitional models, we have 

considered the subjects observed in subsequent follow-ups for obtaining all possible pairs 

from both the observations. 

 

5. APPLICATIONS 
 

 For this study, an application is shown in this section from the Health and Retirement 

Study (HRS) data (1992-2004). The HRS is sponsored by the National Institute of Aging 

(grant number NIA U01AG09740) conducted by the University of Michigan (Wave [1-7] 

Year [1992-2004]). This study was conducted nationwide for individuals over age 50 and 

their spouses. We used the panel data on depression from the two rounds of the study 

conducted on individuals over age 50 years in 1992 (Wave I), 1994 (Wave II) data 

documented by RAND. The depression index is based on the score on the basis of the 

scale proposed by the Center for Epidemiologic Studies Depression (CESD). As 

indicated in the documentation of the RAND, the CESD score is computed on the basis 

of eight indicators attributing depression problem that were based on six negative (all or 

most of the time: depressed, everything is an effort, sleep is restless, felt alone, felt sad, 

and could not get going) and two positive indicators (felt happy, enjoyed life). These 

indicators are yes/no responses of the respondent’s feelings much of the time over the 

week prior to the interview. The CESD score is the sum of six negative indicators minus 

two positive indicators. Hence, severity of the emotional health can be measured from the 

CESD score. From the panels of data, we used 9761 respondents for analyzing depression 

among the elderly in the USA during 1992-1994. 
 

 The dependent and explanatory variables were: no depression = 0 (CESD score 0), 

depression= 1 (CESD score>0), age (in years), gender (male=1, female=0), marital status 

(married/partnered = 1, single=0), Body Mass Index (BMI), schooling (number of years), 

Caucasian (white=1, else 0); Black (black=1, else 0); others= reference category, 

drinking habit (yes=1, no=0), conditions (number of conditions). 
 

 Table 1 displays the descriptive mean and standard deviation of some of the selected 

variables for Waves I and II. We observed that the number of conditions for subjects with 

or without depression varied substantially. The average numbers of conditions for Waves 

I and II are 1.43 and 1.59 as compared to that of 0.88 and 0.96 for with and without 

depression respectively. The distribution of the background characteristics indicate that 

the depression increased in Wave II for all categories (Table 2). The transition count 

displayed in Table 3 shows that 65 percent remains in the depression-free state in both 

the Waves compared to 71.5 percent in depressed state. As compared to 35 percent 


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making transition to depressed state from no-depression, 28.5 percent moved from 

depression to no-depression state. 
 

 The logistic regressions are estimated for first two waves on the basis of the 

formulations given in Section 2 for zero order (Table 4). These estimates are employed to 

obtain the corresponding sensitivity and specificity for the approach described in Section 

2 for Waves I and II. Similarly, the estimates based on the Markov model (as described in 

Section 3) are displayed in Table 5. The summary measures for area under the curves and 

the corresponding confidence intervals are presented in Table 6. The areas under curve 

for Waves I and II are 0.682 and 0.710 respectively using the estimates obtained 

separately for each wave (Figure 1 and Figure 2). These estimates are quite low in 

matching the events. On the other hand, the Markov model shows a remarkable increase 

in the Area Under Curve (Figure 3) estimation (0.968). The transition model is based on 

the first order Markov chain in this example. 

 

6. CONCLUSION 
 

 For assessing the performance of prediction of binary outcome of a disease status, we 

can employ various procedures. In the literature, there is a large number of research 

papers for estimating area under curve based on traditional cross-sectional data. On the 

other hand, the prediction models are mostly based on the longitudinal data but 

procedures for repeated measures are scanty in the available literature. This paper shows 

the prediction of disease status employing repeated measures data and then shows the 

procedure for estimating area under curve for covariate dependent Markov models. We 

have considered a first order Markov model with covariate dependence for predicting the 

status of a disease, and then illustrated the procedures for estimating the area under curve. 

The transition model indicates a remarkable improvement in the area under curve using 

the sensitivity and specificity estimates. The application to the HRS data on depression 

illustrates the usefulness of the proposed transition models for repeated measures data. 
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Table 1: 

Descriptive Statistics of Background Characteristics by CESD and Waves 

Variables 

Depression Score (CESD) 

0 1+ Total 

Mean SD Mean SD Count 

WAVE I 

Age (in years) 55.57 3.22 55.49 3.19 8116 

Body Mass Index (BMI)** 26.90 4.84 27.76 5.64 8116 

Years of Education** 12.66 2.90 11.32 3.36 8116 

Number of Conditions** 0.88 0.96 1.43 1.30 8116 

WAVE II 

Age (in years) 57.42 3.20 57.39 3.21 8116 

Body Mass Index (BMI)** 26.91 4.67 27.73 5.50 8116 

Years of Education** 12.95 2.76 11.32 3.32 8116 

Number of Conditions** 0.96 1.01 1.59 1.35 8116 

  Note: ** Significant at 1% level 

 

Table 2: 

Distribution of Background Characteristics by CESD and Waves 

Variables Labels 

Depression Score (CESD) 

0 1+ Total 

Count Row% Count Row% Count 

WAVE I 

Gender** 
Female 2745 60.5 1794 39.5 4539 

Male 2324 65.0 1253 35.0 3577 

Marital Status** 
Single 1009 49.5 1031 50.5 2040 

Married 4060 66.8 2016 33.2 6076 

White** 
No 812 49.2 839 50.8 1651 

Yes 4257 65.8 2208 34.2 6465 

Black** 
No 4391 65.1 2351 34.9 6742 

Yes 678 49.3 696 50.7 1374 

Whether Drink** 
No 1827 57.3 1364 42.7 3191 

Yes 3242 65.8 1683 34.2 4925 

WAVE II 

Gender 
Female 2161 47.6 2378 52.4 4539 

Male 2003 56.0 1574 44.0 3577 

Marital Status** 
Single 806 37.7 1333 62.3 2139 

Married 3358 56.2 2619 43.8 5977 

White** 
No 622 37.7 1029 62.3 1651 

Yes 3542 54.8 2923 45.2 6465 

Black** 
No 3640 54.0 3102 46.0 6742 

Yes 524 38.1 850 61.9 1374 

Whether Drink* 
No 1607 43.9 2055 56.1 3662 

Yes 2557 57.4 1897 42.6 4454 

  Note: ** Significant at 1% level; * Significant at 5% level. 



Islam and Chowdhury 193 

Table 3: 

Transition Count and Transition Probability 

 Transition Count Transition Probability 
Total 

States (Yij) 0 1 0 1 

0 3296 1773 0.650 0.350 5069 

1 868 2179 0.285 0.715 3047 

 

Table 4: 

Logistic Regression for CESD as Outcome Variable from First Two Waves 

Variables Coeff. Std. err. t-value p-value 
95 % CI 

LL UL 

WAVE 1 

Constant 3.138 .483 42.290 .000   

Age (in years) -.034 .008 19.692 .000 .952 .981 

Gender .010 .050 .041 .839 .915 1.115 

Marital Status -.555 .057 95.871 .000 .514 .642 

Body Mass Index (BMI) .002 .005 .116 .733 .992 1.011 

Years of Education -.114 .008 195.901 .000 .878 .906 

White -.488 .133 13.413 .000 .473 .797 

Black -.152 .142 1.142 .285 .650 1.135 

Whether Drink -.055 .051 1.150 .284 .855 1.047 

Number of Conditions .376 .023 270.085 .000 1.393 1.523 

Model Chi-square (p-value) 885.07 (0.0001) 

WAVE II 

Constant 4.342 .496 76.663 .000   

Age (in years) -.034 .008 20.268 .000 .952 .981 

Gender -.126 .049 6.458 .011 .801 .972 

Marital Status -.569 .057 99.884 .000 .506 .633 

Body Mass Index (BMI) .000 .005 .003 .959 .991 1.010 

Years of Education -.153 .009 317.420 .000 .844 .873 

White -.567 .141 16.134 .000 .430 .748 

Black -.300 .151 3.921 .048 .551 .997 

Whether Drink -.148 .050 8.725 .003 .782 .951 

Number of Conditions .385 .022 300.194 .000 1.407 1.534 

Model Chi-square (p-value) 1192.48 (0.0001) 
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Table 5: 

Markov Models for CESD as Outcome Variable from First Two Waves 

Variables Coeff. Std. err. t-value p-value 
95 % CI 

LL UL 

State 0 → State 1 

Constant 3.063 0.624 4.906 0.000 1.839 4.286 

Age (in years) -0.025 0.010 -2.636 0.008 -0.044 -0.007 

Gender -0.228 0.063 -3.599 0.000 -0.352 -0.104 

Marital Status -0.348 0.077 -4.512 0.000 -0.499 -0.197 

Body Mass Index (BMI) 0.004 0.006 0.619 0.536 -0.009 0.017 

Years of Education -0.139 0.011 12.516 0.000 -0.160 -0.117 

White -0.514 0.186 -2.769 0.006 -0.878 -0.150 

Black -0.248 0.200 -1.239 0.215 -0.639 0.144 

Whether Drink -0.084 0.065 -1.287 0.198 -0.212 0.044 

Number of Conditions 0.276 0.032 8.506 0.000 0.212 0.339 

State 1 → State 1 

Constant 4.042 0.834 -4.846 0.000 -5.677 -2.407 

Age (in years) -0.023 0.013 1.716 0.086 -0.003 0.049 

Gender -0.060 0.087 0.696 0.487 -0.110 0.230 

Marital Status -0.456 0.097 4.725 0.000 0.267 0.646 

Body Mass Index (BMI) 0.003 0.008 -0.339 0.734 -0.019 0.013 

Years of Education -0.132 0.015 9.061 0.000 0.104 0.161 

White -0.375 0.230 1.635 0.102 -0.075 0.826 

Black -0.239 0.245 0.975 0.330 -0.241 0.718 

Whether Drink -0.158 0.089 1.773 0.076 -0.017 0.334 

Number of Conditions 0.294 0.039 -7.634 0.000 -0.369 -0.218 

Score Chi-square 1549.35(p-value=0.0001, DF=20) 

LRT 1682.79(p-value=0.0001, DF=20) 

 

Table 6: 

Summary Measures of Area under the Curve 

Source Area 
Std.  

Error 

Asymp. 

Sig. 

Asymptotic  

95% C.I 

Lower  

Bound 

Upper  

Bound 

Based on logistic regression for WAVE I .682 .006 .000 .670 .694 

Based on logistic regression for WAVE II .710 .006 .000 .699 .721 

Based on Markov model .968 .002 .000 .965 .971 
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Fig. 1: ROC Curve based on predicted probability of logistic regression for Wave I 

 

 
Fig. 2: ROC Curve based on predicted probability of logistic regression for Wave II 
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Fig. 3: ROC Curve based on Markov Model 

 


