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SUMMARY

If we observe repeated binary outcomes over time then there may be dependence in out-
comes and a test for dependence may be sought for such data. However, tests for depen-
dence in models for repeated measures remain a challenge where covariates are associated
with previous outcomes and both covariates and previous outcomes are included simultane-
ously in a model. This paper displays the nature of such problems (i.e. dependence among
outcomes may depend on the association between covariates and previous outcomes) inher-
ent in models for repeated binary outcomes that can distort the estimates and may produce
misleading results. In the context of application of regressive models, this paper discusses
conditions for which the regressive models can be safely employed. All these are shown
on the basis of simple relationships between the conditional, marginal and joint probability
mass functions for the bivariate binary outcomes which can be extended to the multivariate
data stemmed from repeated measures. Some test procedures are suggested and applica-
tions are demonstrated using both simulations and real life data. Both the applications
clearly indicate the utility of the proposed tests.
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1 Introduction
It is evident from the studies on repeated measures that there may be dependence in repeated out-
comes over time and the problem becomes more complex if the dependence of outcomes depends
on the explanatory variables as well. This problem still poses a formidable difficulty to both re-
searchers and potential users in various disciplines. This paper proposes a simple way to understand
the mechanism through which appropriate models can be specified. Although the relationship is
displayed for the bivariate binary outcomes for the purpose of illustration, it can be generalized for
a model of any order.

The modeling of correlated binary outcomes has been discussed in Bonney [1], Prentice [2],
Zeger and Qaqish [3], Neuhaus et al. [4], Liang et al. [5], McDonald [6], le Cessie and van Houwelin-
gen [7], and Solis-Trapala et al. [8]. Most of the previous works for different association measures of
dependence were based on the marginal response probabilities. Muenz and Rubinstein [9], Bonney
[1, 10], Azzalini [11], Islam and Chowdhury [12-14] and Islam et al. [15] employed the conditional
regressive logistic models under the Markov assumptions. Edwards [16] provided an approach of
graphical modeling where the Simpson’s paradox is illustrated and the log-linear model is used to
take into account interactions among the factors for assessing dependence. The works of Bonney [1,
10], Islam and Chowdhury [12-14] and Islam et al. [15] can be generalized to include both binary
outcomes in previous times as well as covariates in the conditional models. The joint mass function
for two outcome variables Y1 and Y2 at follow-ups 1 and 2, respectively, in the presence of covari-
ates X1, . . . , Xp, and let X = (1, X1, . . . , Xp)

′, can be expressed as product of the conditional and
marginal probability mass functions for given values of covariates as follows:

PY1,Y2|X (y1,y2 |x ) = PY1|X (y1 |x )× PY2|Y1,X (y2 |y1,x ), (1.1)

where PY1,Y2|X (y1, y2 |x ) is the joint mass function for Y1 and Y2, PY1|X (y1 |x )is the marginal
mass function for Y1, PY2|Y1,X (y2 |y1,x ) is the conditional probability for Y2 given Y1 = y1,
x = (1, x1, . . . , xp)

′, i = 1, 2, . . . n, is the vector of covariate values, and yj , (j = 1, 2) is the value
of the outcome variable at the jth follow-up.

Bonney [1] proposed a regression model for the conditional probabilities as shown below:

PY2|Y1,X(y2 | y1;x) = eθy2

1+eθ
, with θ = γ0 + γ1x1 + · · ·+ γpxp + β1y1, (1.2)

where γ0 is the intercept, β1 is the coefficient of the previous outcome, Y1, and γ1, . . . , γp are the
coefficients of the covariates X1, . . . , Xp, respectively. Here θ is the logit defined as

θ = ln
PY2|Y1,X(Y2 = 1 | y1,x)
PY2|Y1,X(Y2 = 0 | y1,x)

.

2 Test for Dependence: An Extended Regressive Approach
Let us consider the following regressive model for the jth follow-up (j = 1, . . . , J) with two binary
outcomes to test for the dependence in the outcome variables as well as between the covariates and
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the outcome variables. For simplicity, let us consider that J = 2 which can be extended further
but this paper focuses on data from bivariate Bernoulli outcomes from two consecutive follow-ups.
Let us define Yj = s, (s = 0, 1) at follow-up j = 1, 2. Then the model with prior outcome and p
covariates is:

PY2|Y1,X,Z(Y2 = s | y1,x, z) =
e(γ

′x+β1y1+η′z)s

1 + e(γ′x+β1y1+η′z)
, s = 0, 1 (2.1)

where x = (1, x1, . . . , xp)
′, γ′ = (γ0, γ1, . . . , γp), β1 is the parameter corresponding to Y1,

z = (z1,...,zp)
′=(x1y1, . . . , xpy1)

′, η′ = (η1, . . . , ηp). It may be noted here that this model is
an extension of (1.2) as it contain interaction terms Z = (Z1, . . . , Zp)

′.
In the regressive model (1.2), the dependence between Y1 and Y2 is examined on the basis of the

test for H0 : β1 = 0 against H1 : β1 6= 0. Lack of evidence against the null hypothesis may indicate
a possible independence between these variables. Here, it is assumed that for given values of Y1= 0

or Y1= 1 the relationship between X and Y2 remain unchanged. However, it is clearly evident from
the modified model (equation 2.1) that there is dependence through Z as well. Hence, without a
proper investigation about the underlying relationships may lead to misleading conclusions in many
instances if we employ model (1.2). Therefore, we need to test for the hypothesis that for given
values of Y1 = 0 or Y1 = 1 the relationship between the covariates, X and Y2, remains unchanged.
If this does not hold, the test for dependence may provide misleading result due to model misspeci-
fication. The following sections illustrate the underlying relationships and their consequences based
on the extended model proposed in (2.1).

3 Dependence in Three Binary Variables

Let us consider two binary outcome variables Y1 and Y2 and one covariate, X, which is also con-
sidered as binary here for the purpose of illustration. The joint probability can be expressed as
follows:

PY1,Y2|X(y2, y1 | x) = PY2|Y1,X(y2 | y1, x)× PY1|X(y1 | x).

The conditional probability can be expressed as follows for the underlying conditional independence
of the variables:

(i) If Y1 and Y2 are conditionally independent for given X = x then PY2|Y1,X(y2 | y1, x) =

PY2|X(y2 | x), for all values of x, and

(ii) If Y2 and X are conditionally independent for given Y1 = y1 then PY2|Y1,X(y2 | y1, x) =

PY2|Y1
(y2 | y1), for all values of y1.

The conditional model (2.1) can be expressed as follows:

PY2|Y1,X,Z1
(Y2 = s | y1, x, z1) =

exp{(γ0 + γ1x+ β1y1 + η1z1)s}
1 + exp{(γ0 + γ1x+ β1y1 + η1z1)}

, s = 0, 1 (3.1)
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and the conditional model for X = 0 can be shown as:

PY2|Y1,X(Y2 = s | y1, X = 0) =
exp{(β00 + β01y1)s}

1 + exp{(β00 + β01y1)}
, s = 0, 1, (3.2)

where β00 = γ0 and β01 = β1. Similarly, the conditional model for X = 1 is

PY2|Y1,X(Y2 = s | y1, X = 1) =
exp{(β10 + β11y1)s}

1 + exp{(β10 + β11y1)}
, s = 0, 1, (3.3)

where β10 = γ0 and β11 = (β1 + η1). It is noteworthy that β00 = β10 = γ0 in both the conditional
models (3.2) and (3.3). Hence, in case of conditional independence of Y1 and Y2 for given X = x,
we need to test the null hypotheses H0 : β01 = β11 = 0.

Similarly, if Y2 and X are conditionally independent for given Y1 = y1 then PY2|Y1,X(y2 |
y1, x) = PY2|Y1(y2|y1), for all values of y1. The model (3.1) can be expressed as follows for the
values of Y1 = 0 and Y1 = 1:

PY2|Y1,X(Y2 = s | Y1 = 0, x) =
exp{(γ00 + γ01x)s}

1 + exp{(γ00 + γ01x)}
, s = 0, 1, (3.4)

where γ00 = γ0 and γ01 = γ1, and

PY2|Y1,X(Y2 = s | Y1 = 1, x) =
exp{(γ10 + γ11x)s}

1 + exp{(γ10 + γ11x)}
, s = 0, 1, (3.5)

where γ10 = γ0 and γ11 = (γ1 + η1). Hence, in case of conditional independence of Y2 and X for
given Y1 = y1, we need to test the null hypothesis H0 : γ01 = γ11 = 0.

The joint independence of Y1 and Y2 for given X = x in model (1.1) can be shown from the
following relationship:

PY1,Y2|X(y2, y1 | x) = PY2|Y1,X(y2 | y1, x)× PY1|X(y1 | x).

If we employ the conditional independence tests in the above relationship for simultaneous tests in
the joint probability function of Y1 and Y2 for given X = x, it can be shown for the model (3.1)
that the following conditions need to be satisfied: (i) for the test for independence of Y2 and Y1,
the condition to be satisfied for equations (3.4) and (3.5) is that γ01 = γ11 = γ, and (ii) for the
test for independence of Y2 and X , the condition to be satisfied for equations (3.2) and (3.3) is that
β01 = β11 = β. These are illustrated in sections 4 and 5.

4 Test for Conditional Independence of Y1 and Y2

Let us consider the conditional probabilities for dependence between Y1 and Y2 for given X, where
Y1 and Y2 are outcomes in the follow-ups 1 and 2 and X = (1, X1, . . . , Xp) is the vector of p
covariates as shown in section 1 (see [12, 15]) for further details.

The conditional probabilities for Y2 given Y1 = 0, Y1 = 1 and X = x are:

PY2|Y1,X(Y2 = 1 | Y1 = 0,x) =
exp(γ′01x)

1 + exp(γ′01x)
, (4.1)
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where x = (1, x1, . . . , xp)
′, γ′01 = (γ010, γ011, . . . , γ01p), and

PY2|Y1,X(Y2 = 1 | Y1 = 1,x) =
exp(γ′11x)

1 + exp(γ′11x)
, (4.2)

where x = (1, x1, . . . , xp)
′, γ′11 = (γ110, γ111, . . . , γ11p). It may be noted here that

PY2|Y1,X(Y2 = 0 | Y1 = 0,x) + PY2|Y1,X(Y2 = 1 | Y1 = 0,x) = 1 and

PY2|Y1,X(Y2 = 0 | Y1 = 1,x) + PY2|Y1,X(Y2 = 1 | Y1 = 1,x) = 1.

For a single covariate, X , models (4.1) and (4.2) will reduce to (3.4) and (3.5), respectively, for
s = 1. The marginal probabilities for Y1 are defined as follows:

PY1|X(Y1 = 1 | x) = exp(γ′1x)

1 + exp(γ′1x)
, (4.3)

where x = (1, x1, . . . , xp)
′, γ′1 = (γ10, γ11, . . . , γ1p) and

PY1|X(Y1 = 0 | x) = 1

1 + exp(γ′1x)
. (4.4)

We obtain the following joint probabilities using the conditional and marginal probabilities as fol-
lows:

PY1,Y2|X(Y1 = 0, Y2 = 1 | x) = exp(γ′01x)

(1 + exp(γ′01x))(1 + exp(γ′1x))
(4.5)

PY1,Y2|X(Y1 = 0, Y2 = 0 | x) = 1

(1 + exp(γ′01x))(1 + exp(γ′1x))
(4.6)

PY1,Y2|X(Y1 = 1, Y2 = 1 | x) = exp(γ′11x) exp(γ
′
1x)

(1 + exp(γ′11x))(1 + exp(γ′1x))
(4.7)

PY1,Y2|X(Y1 = 1, Y2 = 0 | x) = exp(γ′1x)

(1 + exp(γ′11x))(1 + exp(γ′1x))
(4.8)

The marginal probabilities for Y1 are obtained by summing (4.5) and (4.6) and (4.7) and (4.8) which
are (4.4) and (4.3), respectively. Similarly, the marginal probabilities for Y2 by summing (4.5) and
(4.7) and (4.6) and (4.8) respectively and under the H0 : γ01 = γ11 = γ the probabilities are:

PY2|X(Y2 = 1 | x) = exp(γ′x)

1 + exp(γ′x)
and PY2|X(Y2 = 0 | x) = 1

1 + exp(γ′x)
(4.9)

These probabilities are same as the marginal probabilities of Y1 under the H0 : γ1 = γ.
If Y1 and Y2 are conditionally independent for any value of X = x then (4.1) and (4.2) are equal.

In other words, the conditional independence is true if

PY2|Y1,X(Y2 = 1 | Y1 = 0,x) = PY2|Y1,X(Y2 = 1 | Y1 = 1,x) =
eγ

′
01x

1 + eγ′
01x

=
eγ

′
11x

1 + eγ
′
11x

=
eγ

′x

1 + eγ′x
.
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It shows that the conditional independence is achieved only if γ01 = γ11 = γ. This is equivalent to
the test for H0 : β = 0 in the regressive model (2.1).

In other words, for testing H0 : β = 0, in a regressive model, is equivalent to testing the null
hypothesis H0 : γ01 = γ11 in conditional models (4.1) and (4.2).

The test statistic is

χ2 = (γ̂01 − γ̂11)
′[V̂ar(γ̂01 − γ̂11)

]−1
(γ̂01 − γ̂11) (4.10)

which is chi-square with p degrees of freedom.
An alternative test can also be performed under the equality of parameters due to the fact that the

marginal probabilities of Y1 and Y2 are same as shown in (4.1–4.2) and (4.9) respectively. Hence,
the alternative test can be performed for

H0 : γ01 = γ vs H1 : γ01 6= γ

The test statistic is
χ2 = (γ̂01 − γ̂)′

[
V̂ar(γ̂01 − γ̂)

]−1
(γ̂01 − γ̂) (4.11)

which asymptotically follows chi-square with p degrees of freedom. In addition to test hypothesis
H0 : γ11 = γ vs H1 : γ11 6= γ, We can use the test statistic

χ2 = (γ̂11 − γ̂)′
[
V̂ar(γ̂11 − γ̂)

]−1
(γ̂11 − γ̂), (4.12)

which is also chi-square with p degrees of freedom. For single covariate, these hypotheses can be
performed using the asymptotically normal tests.

5 Test for Conditional Independence of Y2 and X for Given Y1

Let us consider that Y1 and Y2 are the outcomes in the follow-ups 1 and 2 and X is a covariate as
shown in section 3 instead of a vector of covariates shown in section 4. This is considered to keep
the illustration simple. Without any loss of generality, this can be extended to any p-covariate vector
producing any set of covariate patterns.

We know that the conditional probabilities of Y2 given X = x and Y1 = y1 can be shown as
follows:

PY2|Y1,X (Y 2= 1|y1, X = 0) =
eβ01y1

1 + eβ01y1
(5.1)

and

PY2|Y1,X (Y 2= 1|y1, X = 1) =
eβ11y1

1 + eβ11y1
. (5.2)

By definition, Y2 and X are conditionally independent for given Y1 = y1 if

PY2|Y1,X(y2 | y1, X = 0) = PY2|Y1,X(y2 | y1, X = 1).
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It can be shown from (5.1) and (5.2) that β01 = β11 = β satisfies this condition. Now the joint
probability function

PY2,Y1|X(y2, y1 | x) = PY2|Y1,X(y2 | y1, x)× PY1|X(y1 | X),

where the regressive model (1.2) represents the conditional probability PY2|Y1,X(y2 | y1, x) which
reduces to only PY2|Y1

(y2 | y1) if γ = 0. Alternatively, an equivalent test can be considered for
β01 = β11 = β if conditional models (5.1) and (5.2) are considered. We can use the Wald chi-
square test with 1 degree of freedom as shown below:

χ2 =
(β̂01 − β̂11)2

V̂ar(β̂01 − β̂11)
. (5.3)

6 Simulation

In order to examine the proposed method, we have employed both simulation and application to real
life data. For the purpose of generating correlated binary data for simulations, a software package,
bindata, developed by Leisch et al. [17] has been used. Based on this method, data can be generated
from multivariate Bernoulli distributions. The joint distribution of Y1 and Y2 are fully specified
by the marginal and conditional probabilities. We have considered two binary outcome variables,
Y1 and Y2, and one binary covariate, X . For these variables, data are generated from a trivariate
Bernoulli distribution. These three binary variables are not necessarily independent. For generating
data, we have used various combinations of the following probabilities: PY1(Y1 = 1), PY2(Y2 = 1),
PX(X = 1), PY1,Y2

(Y1 = 1, Y2 = 1), PY1,X(Y1 = 1, X = 1) and PY2,X(Y2 = 1, X = 1). We
have used different combinations of the joint probabilities which are denoted as models based on
relationship between Y1 and Y2 and relationship between Y2 and X for given values of Y1. Eight
models are considered each for 500 simulations with samples of size 350 and 1000, respectively. In
defining the models, we have considered the following to obtain the variations in the relationships in
the bivariate binary outcome variables and a single covariate: (i) independence or near independence
of Y1 and Y2, (ii) dependence in Y1 and Y2, (iii) close conditional probability of Y2 and X for
given Y1 =0 and Y1 =1, and (iv) difference in the conditional probabilities of Y2 and X for given
Y1 = y1. Based on the simulated data, we estimated/fitted the following: (i) the odds ratios, (ii) the
conditional correlations between Y2 and X for given Y1 = y1, (iii) the conditional models for Y2
for given Y1 = y1 and X = x (equation 4.1 and 4.2), (iv) the conditional models for Y2 for given
Y1 = y1 and X = x (equations 5.1 and 5.2), (v) the regressive models (equation 1.2), and (vi) the
proposed tests shown in (4.10) and (5.3).

The average odds ratios (Table 1) indicate that the Models 1, 2, 3 and 5 show no evidence of
association between Y1 and Y2 and the odds ratios are close to 1. However, the Models 1 and 5
indicate that there are close but non-zero conditional correlations between Y2 and X for given Y1
but one is positive (Model 1) and the other is negative (Model 5). This means that we expect no
association between Y1 and Y2 but association between Y2 and X and due to close (approximately)
but non-zero correlations, the conditional models and the regressive model are expected to give
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similar estimates. The average estimated coefficients for X variable from sample size 350 and 1000
are 1.394 and 1.386 for the conditional model (4.1) and 1.700 and 1.349 for the conditional model
(4.2), respectively. Similar finding is observed for Model 5. The significant models (at 5% level)
were found 496 and 498 times out of 500 samples of size 350 and 500 out of 500 samples of size
1000. It is observed that with the increase in sample size the results become more consistent. The
equality of parameters for both the variables X and Y1 indicate that the regressive model can be
employed without any distortion. The significant results were obtained mostly in less than 5% of
the cases for both sample size 350 of Model 1 and 1000 of Model 5, respectively.

The Model 2 shows no association between Y1 and Y2 but different correlations between X and
the outcome variables. In that case, we observe marked variations in the estimated parameters for
the regressive model. The proposed tests for the equality of parameters corresponding to X shows
significant results in 344 and 477 out of 500 times for samples of size 350 and 1000, respectively.
This is evident more sharply for the Model 3 where the correlations are taken in opposite directions
for the conditional models (4.1) and (4.2), respectively. It clearly reveals that under situations for
the Models 2 and 3, the regressive models are not good choices. The proposed tests show significant
results in almost all the cases of simulations. In the Models 1 and 5, the odds ratio between Y1
and Y2 appear to be near 1 implying independence and correlations between X and Y1 and X and
Y2 are close but non-zero. In both the cases, the proposed tests for the equality of parameters of
the conditional models indicate the acceptance of null hypothesis for Y2 given Y1 = y1 as well as
for X and Y2 for given Y1 = y1. However, the Model 4 displays association between Y1 and Y2
and equal but non-zero correlation between X and outcome variables Y2 for given Y1 = y1. The
proposed tests indicate the hypothesis of equality of parameters for the conditional models for both
given X = x and given Y1 = y1 can be accepted. In that case, the conditional models and the
regressive models provide similar estimates. The estimated parameters for the conditional models
and the regressive models appear to be similar for the Model 4 and the proposed tests show that the
equality of parameters for the conditional models failed in only less than 4 percent cases. Hence, the
regressive models can be employed without any difficulty. Model 6, on the other hand, shows the
association between Y1 and Y2 and different correlations between X and Y2 for conditional models
(4.1) and (4.2). The conditional models show that the null hypothesis of equality of parameters can
be rejected in this model which is reflected from the proposed tests. This shows clearly that the
regressive model estimates are quite different and the proposed tests of the equality of parameters
reveals significant results in 480 and 500 out of 500 times for samples of size 350 and 1000 respec-
tively. Under this circumstance, the regressive model fails to provide any reasonable estimate of the
relationship with the variables of interest.

7 Application to Depression Data

For this study, an application is displayed in this section from the Health and Retirement Study
(HRS) data [18]. The HRS is sponsored by the National Institute of Aging (grant number NIA
U01AG09740) and conducted by the University of Michigan (2002). This study is conducted na-
tionwide for individuals over age 50 and their spouses. We have used the panel data from the two
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rounds of the study conducted on individuals over age 50 years in 1992 and 1994 and documented
by RAND. We have used the panel data on depression for the period, 1992-1994. The depression in-
dex is based on the score on the basis of the scale proposed by the Center for Epidemiologic Studies
Depression (CESD). As indicated in the documentation of the RAND, the CESD score is computed
on the basis of eight indicators attributing depression problem. The indicators of depression problem
are based on six negative (all or most of the time: depressed, everything is an effort, sleep is restless,
felt alone, felt sad, and could not get going) and two positive indicators (felt happy, enjoyed life).
These indicators are yes/no responses of the respondent’s feelings much of the time over the week
prior to the interview. The CESD score is the sum of six negative indicators minus two positive
indicators. Hence, severity of the emotional health can be measured from the CESD score. From
the panels of data, we have used 9761 respondents for analyzing depression among the elderly in
the USA during 1992-2002. Steffick [19] indicated that many studies have used the CESD scale to
measure depressive symptoms in a wide range of both clinical and non-clinical populations. Cheng,
Chan and Fung [20] showed the validity of a short version of the CESD scale. The study of depres-
sion is important among the elderly because repeated spells of depression may lead to fatality such
as suicide [21]. It is further noted that the depression is very common among the elderly and may be
difficult to diagnose. Evans and Mottram [22] observed that there is movement along the spectrum
of depression over time. A third of the minor depression patients may develop major depression over
time, and a half of those with major depression may suffer from minor depression after recovery.

We considered the following dependent and explanatory variables: depression status (no depres-
sion (CESD score 6 0) = 0, depression (CESD score>0)=1), we may denote Y1 = depression
status at 1992, and Y2 = depression status at 1994; gender (male=1, female=0), marital status
(married/partnered=1, single/widowed/divorced=0), ethnic group (white=1, else 0; black=1, else 0;
others= reference category).

Table 2 shows the fit of the marginal model for the outcome variable Y1 as well as fit of the
regressive model considering the previous outcome as a covariate. It shows that gender, marital
status and white race as compared to other races are negatively associated with depression and the
model is significant (p-value<0.001) in the regressive model but gender appears to be non-significant
in the marginal model. Table 3 displays the transition count and transition probabilities for states no
depression and depression. It is observed that the probabilities of remaining in no depression and
depression states are 0.650 and 0.715, respectively. The probability of making a transition from no
depression to depression during a two year period is 0.350 and the probability of a recovery from
depression during consecutive follow-ups in two-years apart is 0.285. In other words, more people
move to depression than that of the recovery.

Then we need to test for the equality of the parameters of the conditional models for the new
cases of depression (transition from 0 to 1) and the old cases (transition type 1 to 1). The estimates of
the parameters (Table 4) indicate that gender, marital status and white race are negatively associated
with depression for both the models and the estimates appear to be visibly different for gender
and marital status. The chi-square test value (as shown in (4.10)) is 838.49 for the equality of the
parameters for the conditional models reflect the large variation and the null hypothesis of equality of
parameters is rejected (p-value<0.001). In other words, in this example, we have demonstrated that
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Table 2: Logistic Regression for Wave I and the regressive model (dependent variable= CESD score)

Variables Coefficient Standard error Wald Chi-square p-value

Marginal Model Y1

Constant 0.4428 0.1205 13.492 0.0002

Gender -0.0479 0.0460 1.084 0.2977

Marital Status -0.6045 0.0522 133.873 0.0001

White -0.5912 0.1169 25.574 0.0001

Black -0.0368 0.1257 0.086 0.7700

Likelihood Ratio (β = 0) (p-value) 307.826 (0.0001)

-2 Log L 11231.366

Regressive Model

Constant 0.3680 0.1428 6.639 0.0100

Gender -0.2378 0.0487 23.809 0.0001

Marital Status -0.4598 0.0568 65.500 0.0001

White -0.5871 0.1368 18.431 0.0001

Black -0.2086 0.1469 2.016 0.1557

Y1 1.4375 0.0503 817.756 0.0001

Likelihood Ratio (β = 0) (p-value) 1211.616 (0.000)

-2 Log L 10121.338

Note: Gender: male=1, female=0; Marital Status: married/partnered,

0=single/divorced/separated; White: yes=1, no=0; Black: yes=1, no=0.

the conditional models need to be fitted and we also concluded that the independence of the outcome
variables is rejected. Finally, a comparison of the conditional and regressive models indicates that
the estimates of the parameters for the risk factors shows significant variation in the conditional
models for depression depending on given previous outcome. Hence, a regressive model is not
justified for such analysis.

8 Concluding Remarks

In regressive models both the covariates and the previous outcomes are included. In this paper, the
possible relationships in the outcome variables, covariates and previous outcomes are demonstrated
and tests are proposed based on the conditional, marginal and joint models for bivariate binary out-
comes. It is clearly shown in this paper that under certain circumstances separate conditional models
are preferred as compared to the regressive models where both covariates and previous outcomes



Tests for Dependence in Binary Repeated . . . 215

Table 3: Transition count and probability based on Consecutive Follow-ups I and II

WAVE I WAVE II

Transition Count Transition Probability

0 1 Total 0 1 Total

0 3296 1773 5069 0.650 0.350 1.000

1 868 2179 3047 0.285 0.715 1.000

Table 4: Logistic Regression for Wave I and the regressive model (dependent variable= CESD score)

Variables Coefficient Standard error Wald Chi-square p-value

Model 0 →> 1

Constant 0.2493 0.1832 1.8517 0.1736

Gender -0.2787 0.0608 21.0197 0.0001

Marital Status -0.2990 0.0747 16.0170 0.0001

White -0.5906 0.1771 11.1271 0.0009

Black -0.1246 0.1908 0.4267 0.5136

Model 1 →> 1

Constant 1.8606 0.2249 68.4430 0.0001

Gender -0.1792 0.0826 4.7077 0.0300

Marital Status -0.5245 0.0932 31.6490 0.0001

White -0.5868 0.2171 7.3038 0.0069

Black -0.2998 0.2315 1.6763 0.1954

Likelihood Ratio (p-value) 1210.549 (0.000)

Note: Gender: male=1, female=0; Marital Status: married/partnered,

0=single/divorced/separated; White: yes=1, no=0; Black: yes=1, no=0.



216 Islam et al.

are specified in order to examine the dependence between the current and the previous outcomes.
The relationships between current outcome, previous outcome and covariate can have the following
types: (i) both previous outcome and covariate are conditionally independent, (ii) one of the pre-
vious outcome or covariate is conditionally independent, and (iii) none of the two is conditionally
independent. The regressive models can be applied for cases (i) and (ii) but fails to provide any
feasible model for case (iii). Both simulations and real life applications clearly indicate the utility
of the proposed tests.
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